Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2009_5_a0, author = {O. Bershtein and Ye. Kolisnyk}, title = {Plancherel measure for the quantum matrix ball-1}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {315--346}, publisher = {mathdoc}, volume = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/} }
O. Bershtein; Ye. Kolisnyk. Plancherel measure for the quantum matrix ball-1. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 315-346. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/
[1] W. Baldoni, P. M. Frajria, “The Harish-Chandra Homomorphism for a Quantized Classical Hermitean Symmetric Pair”, Ann. Inst. Fourier, 49 (1999), 1179–1214 | DOI | MR | Zbl
[2] O. Bershtein, “On a $q$-Analog of a Sahi Result”, J. Math. Phys., 48:4 (2007), 1917–1924 | DOI | MR
[3] O. Bershtein, “Degenerate Principal Series of Quantum Harish-Chandra Modules”, J. Math. Phys., 45:10 (2004), 3800–3827 | DOI | MR | Zbl
[4] O. Bershtein, Y. Kolisnyk, L. Vaksman, “On a $q$-Analog of the Wallach-Okounkov Formula”, Lett. Math. Phys., 78 (2006), 97–109 | DOI | MR | Zbl
[5] N. Bourbaki, Lie Groups and Lie Algebras. Chap. 4–6, Springer, Berlin–Heidelberg–New York, 2004 | MR
[6] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, Basel–Boston–Berlin, 2002 | MR
[7] J. F. Van Diejen, “Commuting Difference Operators with Polynomial Eigenfunctions”, Comp. Math., 95:2 (1995), 183–233 | MR | Zbl
[8] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[9] S. Helgason, Differential Geometry and Symmetric Spaces, Mir, Moscow, 1964 (Russian) | Zbl
[10] S. Helgason, Groups and Geometryc Analysis, Mir, Moscow, 1987 (Russian) | MR
[11] B. Hoogenboom, “Spherical Functions and Invariant Differential Operators on Complex Grassmann Manifolds”, Arkiv Mat., 20:1–2 (1982), 69–85 | DOI | MR | Zbl
[12] A. Joseph, Quantum Groups and Their Primitive Ideals, Springer-Verlag, Berlin–Heidelberg, 1995 | MR
[13] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR
[14] L. I. Korogodski, Y. S. Soibelman, Algebra of Functions on Quantum Groups. Part I, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[15] L. I. Korogodski, L. L. Vaksman, “Spherical Functions on Quantum Group $SU(1;1)$ and $q$-Analogue of the Meller-Fock Formula”, Funct. Anal. and Appl., 25:1 (1991), 60–62 (Russian) | MR | Zbl
[16] L. I. Korogodski, L. L. Vaksman, “On Harmonic Analysis on Quantum Group $SU(1;1)$”, 14th School on Operator Theory in Functional Spaces, N. Novgorod, 1989 (Russian) | Zbl
[17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl
[18] M. A. Nainmark, Normalized Rings, Nauka, Moscow, 1968 (Russian)
[19] D. Shklyarov, S. Sinel'shchikov, L. Vaksman $q$-Analogues of Some Bounded Symmetric Domains, Czehoslovak J. Phys., 50:1 (2000), 175–180 | DOI | MR | Zbl
[20] D. L. Shklyarov, L. L. Vaksman, “Intergral Representations of Functions in the Quantum Disk, I”, Mat. Fiz., Anal., Geom., 4 (1997), 286–308 (Russian) | MR | Zbl
[21] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Fock Representations and Quantum Matrices”, Intern. J. Math., 15:9 (2004), 1–40 | DOI | MR
[22] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Hidden Symmetry of Some Algebras of $q$-Differential Operators”, Noncommutative Structures in Mathematics and Physics, eds. S. Duplij, J. Wess, NATO Sci. Ser., Kluwer, Dordrecht–Boston–London, 2000 | MR
[23] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, On Function Theory in the Quantum Matrix Ball: an Invariant Integral, Preprint Math-QA/9803110, 1998
[24] S. Sinel'shchikov, L. Vaksman, “On $q$-Analogues of Bounded Symmetric Domains and Dolbeault Complexes”, Math. Phys., Anal., Geom., 1:1 (1998), 75–100 | DOI | MR | Zbl
[25] J. V. Stokman, Multivariable Orthogonal Polynomials and Quantum Grassmanians, Universal Press, Veenendaal, 1998
[26] J. V. Stokman, M. S. Dijkhuizen, “Some Limit Transitions between BC Type Orthogonal Polynomials Interpreted on Quantum Complex Grassmanians”, Publ. Res. Inst. Math. Sci., 35 (1999), 451–500 | DOI | MR | Zbl
[27] J. V. Stokman, “Multivariable Big and Little $q$-Jacobi Polynomials”, SIAMM J. Math. Anal., 28 (1997), 452–480 | DOI | MR
[28] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin–New York, 1979 | MR