Plancherel measure for the quantum matrix ball-1
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 315-346

Voir la notice de l'article provenant de la source Math-Net.Ru

The Plancherel formula is one of the celebrated results of harmonic analysis on semisimple Lie groups and their homogeneous spaces. The main goal of this work is to find a $q$-analogue of the Plancherel formula for spherical transform on the unit matrix ball. Here we present an explicit formula for the radial part of the Plancherel measure. The $q$-Jacobi polynomials as spherical functions naturally arise on the way.
@article{JMAG_2009_5_a0,
     author = {O. Bershtein and Ye. Kolisnyk},
     title = {Plancherel measure for the quantum matrix ball-1},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {315--346},
     publisher = {mathdoc},
     volume = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/}
}
TY  - JOUR
AU  - O. Bershtein
AU  - Ye. Kolisnyk
TI  - Plancherel measure for the quantum matrix ball-1
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 315
EP  - 346
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/
LA  - en
ID  - JMAG_2009_5_a0
ER  - 
%0 Journal Article
%A O. Bershtein
%A Ye. Kolisnyk
%T Plancherel measure for the quantum matrix ball-1
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 315-346
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/
%G en
%F JMAG_2009_5_a0
O. Bershtein; Ye. Kolisnyk. Plancherel measure for the quantum matrix ball-1. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009), pp. 315-346. http://geodesic.mathdoc.fr/item/JMAG_2009_5_a0/