From Laplacian transport to Dirichlet-to-Neumann (Gibbs) semigroups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 551-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2008_4_a4,
     author = {V. A. Zagrebnov},
     title = {From {Laplacian} transport to {Dirichlet-to-Neumann} {(Gibbs)} semigroups},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {551--568},
     publisher = {mathdoc},
     volume = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_a4/}
}
TY  - JOUR
AU  - V. A. Zagrebnov
TI  - From Laplacian transport to Dirichlet-to-Neumann (Gibbs) semigroups
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 551
EP  - 568
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_a4/
LA  - en
ID  - JMAG_2008_4_a4
ER  - 
%0 Journal Article
%A V. A. Zagrebnov
%T From Laplacian transport to Dirichlet-to-Neumann (Gibbs) semigroups
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 551-568
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_a4/
%G en
%F JMAG_2008_4_a4
V. A. Zagrebnov. From Laplacian transport to Dirichlet-to-Neumann (Gibbs) semigroups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 551-568. http://geodesic.mathdoc.fr/item/JMAG_2008_4_a4/

[1] D. C. Barber, B. H. Brown, “Applied Potential Tomography”, J. Phys. E, 17 (1984), 723–733 | DOI | MR

[2] V. Cachia, V. A. Zagrebnov, “Operator-Norm Approximation of Semigroups by Quasisectorial Contractions”, J. Funct. Anal., 180 (2001), 176–194 | DOI | MR | Zbl

[3] V. Cachia, V. A. Zagrebnov, “Trotter Product Formula for Nonselfadjoint Gibbs Semigroups”, J. London Math. Soc., 64 (2001), 436–444 | DOI | MR | Zbl

[4] P. R. Chernoff, “Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators”, Mem. Am. Math. Soc., 140 (1974), 1–121 | MR

[5] H. Emamirad, I. Laadnani, “An Approximating Family for the Dirichelet-to-Neumann Semigroup”, Adv. Diff. Eq., 11 (2006), 241–257 | MR | Zbl

[6] H. Emamirad, V. A. Zagrebnov, “On the Gibbs Character of Dirichelet-to-Neumann Semigroups” (to appear)

[7] K.-J. Engel, “The Laplacian on $C(\overline\Omega)$ with Generalized Wenzell Boundary Conditions”, Arch. Math., 81 (2003), 548–558 | DOI | MR | Zbl

[8] J. Escher, “The the Dirichelet-to-Neumann Operator on Continuous Functions”, Ann. della Scuola Norm. Sup. Pisa, 21 (1994), 235–266 | MR | Zbl

[9] D. Gilbarg, N. S. Trudinger, Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg–Berlin, 1983 | MR | Zbl

[10] D. S. Grebenkov, M. Filoche, B. Sapoval, “Mathematical Basis for a General Theory of Laplacian Transport Towards Irregular Interfaces”, Phys. Rev. E, 73 (2006), 021103-9 | DOI | MR

[11] A. Greenleaf, G. Uhlmann, “Local Uniqueness for the Dirichelet-to-Neumann Map via the Two Plane Transform”, Duke Math. J., 108 (2001), 559–617 | MR

[12] P. Hislop, C. Lutzer, “Spectral Asymptotics of the Dirichelet-to-Neumann Map on Multiply Connected Domains in $\mathbb R^n$”, Inverse Problems, 17 (2001), 1717–1741 | DOI | MR | Zbl

[13] L. Hörmander, The Analysis of Linear Partial Differential Equations IV, Springer-Verlag, New York, 1985

[14] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Heidelberg–Berlin, 1966 | MR

[15] P. Lax, Functional Analysis, Wiley Interscience, New York, 2002 | MR | Zbl

[16] J. Lee, G. Uhlmann, “Determining Anisotropic Real-Analytic Conductivities by Boundary Measurement”, Comm. Pure Appl. Math., 42 (1989), 1097–1112 | DOI | MR | Zbl

[17] H. Neidhardt, V. A. Zagrebnov, “Trotter-Kato Product Formula and Operator-Norm Convergence”, Commun. Math. Phys., 205 (1999), 129–159 | DOI | MR | Zbl

[18] B. Sapoval, “General Formulation of Laplacian Transfer Across Irregular Sufaces”, Phys. Rev. Lett., 73 (1994), 3314–3316 | DOI

[19] B. Simon, Trace Ideals and Their Applications, Amer. Math. Soc., Providence, RI, 2005 | MR

[20] M. E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, Springer-Verlag, New York, 1996 | MR

[21] M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, New Jersey, 1996 | MR

[22] V. A. Zagrebnov, “Quasi-Sectorial Contractions”, J. Funct. Anal., 254 (2008), 2503–2511 | DOI | MR | Zbl

[23] V. A. Zagrebnov, Gibbs Semigroups, Leuven Notes in Math. and Theoret. Physics, 10, Leuven Univ. Press, Leuven, 2002