Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2008_4_a3, author = {E. A. Kuznetsov and D. S. Agafontsev and F. Dias}, title = {Bifurcations of solitary waves}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {529--550}, publisher = {mathdoc}, volume = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_a3/} }
E. A. Kuznetsov; D. S. Agafontsev; F. Dias. Bifurcations of solitary waves. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 529-550. http://geodesic.mathdoc.fr/item/JMAG_2008_4_a3/
[1] Soliton Theory, Plenum Press, New York–London, 1984 | MR | Zbl
[2] A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985 | MR
[3] Nauka, Moscow, 1995, 521 pp. | MR | Zbl
[4] M. S. Longuet-Higgins, “Capillary-Gravity Waves of Solitary Type on Deep Water”, J. Fluid Mech., 200 (1989), 451–470 | DOI | MR | Zbl
[5] G. Iooss, K. Kirchgässner, “Bifurcation d'Ondes Solitaires en Présence d'une Faible Tension superficielle”, C.R. Acad. Sci. Paris, Sér. I, 311 (1990), 265–268 | MR | Zbl
[6] J.-M. Vanden-Broeck, F. Dias, “Gravity-Capillary Solitary Waves in Water of Infinite Depth and Related Free-Surface Flows”, J. Fluid Mech., 240 (1992), 549–557 | DOI | MR | Zbl
[7] F. Dias, G. Iooss, “Gravity-Capillary Solitary Waves with Damped Oscillations”, Physica D, 65 (1993), 399–423 | DOI | MR | Zbl
[8] M. S. Longuet-Higgins, “Capillary-Gravity Waves of Solitary Type and Envelope Solitons on Deep Water”, J. Fluid Mech., 252 (1993), 703–711 | DOI | MR | Zbl
[9] T. R. Akylas, “Envelope Solitons with Stationary Crests”, Phys. Fluids, 5 (1993), 789–791 | DOI | Zbl
[10] JETP, 86 (1998), 1035–1046 | DOI
[11] JETP, 89 (1999), 163 ; L. D. Landau, E. M. Lifshitz, Fluid mechanics, 3rd Engl. Ed., Pergamon Press, New York, 1986 | DOI
[12] 3rd Ed., Nauka, Moscow, 1986
[13] F. Dias, G. Iooss, “Capillary-Gravity Interfacial Waves in Deep Water”, Eur. J. Mech. B/Fluids, 15 (1996), 367–390 | MR
[14] G. Iooss, “Existence d'Orbites Homoclines à un Équilibre Elliptique, pour un Système Réversible”, C.R. Acad. Sci. Paris, 324 (1997), 933–997 | DOI | MR
[15] V. E. Zakharov, E. A. Kuznetsov, “Hamiltonian Formalism for Nonlinear Waves”, Usp. Fiz. Nauk, 167 (1997), 1137–1167 (Russian) | DOI
[16] J. Nycander, “Steady Vortices in Plasmas and Geophysical Flows”, Chaos, 4 (1994), 253 | DOI
[17] JETP, 83 (1996), 73 ; “Short Opt. Solitons in Fibers”, Chaos, 10 (2000), 551–558 | DOI
[18] Sov. Phys. JETP, 34 (1972), 62–69 | MR
[19] V. E. Zakharov, Handbook of Plasma Physics. 2. Basic Plasma Physics II, eds. A. Galeev, R. Sudan, North–Holland, Amsterdam, 1984
[20] N. G. Vakhitov, A. A. Kolokolov, “Stationary Solutions of the Wave Equation in Media with Saturated Nonlinearity”, Izv. VUZ. Radiofizika, 16 (1973), 1020–1028
[21] E. A. Kuznetsov, A. M. Rubenchik, V. E. Zakharov, “Soliton Stability in Plasmas and Fluids”, Phys. Rep., 142 (1986), 103 | DOI | MR
[22] E. A. Kuznetsov, S. K. Turitsyn, “Talanov Transformations for Selffocusing Problems and Instability of Waveguides”, Phys. Let., 112A (1985), 273 | DOI
[23] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Fizmatgiz, Moscow, 1961 (Russian)
[24] L. Nirenberg, “An Extended Interpolation Inequality”, Ann. Sci. Norm. Sup. Pisa, 20:4 (1966), 733–737 | MR | Zbl
[25] M. I. Weinstein, “Nonlinear Schrodinger Equations and Sharp Interpolation Estimates”, Comm. Math. Phys., 87 (1983), 567–576 | DOI | MR | Zbl
[26] E. A. Kuznetsov, “Wave Collapse in Plasmas and Fluids”, Chaos, 6 (1996), 381–390 | DOI | Zbl
[27] E. A. Kuznetsov, J. J. Rasmussen, K. Rypdal, S. K. Turitsyn, “Sharper Criteria of the Wave Collapse”, Physica D, 87 (1995), 273–284 | DOI | MR | Zbl
[28] D. S. Agafontsev, F. Dias, E. A. Kuznetsov, “Bifurcations and Stability of Internal Solitary Waves”, Pis'ma v ZhETF, 83:5 (2006), 241 (Russian)
[29] D. S. Agafontsev, F. Dias, E. A. Kuznetsov, “Deep-Water Internal Solitary Waves Near Critical Density Ratio”, Physica D, 225 (2007), 153 | DOI | MR | Zbl
[30] D. S. Agafontsev, F. Dias, E. A. Kuznetsov, “Collapse of Solitary Waves near Transition from Supercritical to Subcritical Bifurcations”, Pis'ma v ZhETF, 87 (2008), 767–771 (Russian)
[31] G. B. Whitham, “Nonlinear Dispersive Waves”, Proc. Rod. Soc. A, 283 (1965), 238 | DOI | MR | Zbl
[32] D. S. Agafontsev, “Deep-Water Internal Solitary Waves near Critical Density Ratio”, Pis'ma v ZhETF, 87 (2008), 225 (Russian)
[33] Electrodynamics of Continuous Media, 2-nd ed., London–Pergamon, 1984 | MR
[34] V. I. Petviashvili, “On the Equation for Unusual Soliton”, Fizika Plasmy, 2 (1976), 469
[35] D. J. Kaup, A. C. Newell, “Stationary Solutions of the Wave Equation in the Medium with Saturated Nonlinearity”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR | Zbl
[36] V. E. Zakharov, “Collapse of Langmure Waves”, Z. Eksp. Teor. Fiz.; Sov. Phys. JETP, 35 (1972), 908
[37] S. N. Vlasov, V. A. Petrishchev, V. I. Talanov, “Averaged Description of Wave Beams in Linear and Nonlinear Media (the Method of Moments)”, Izv. VUZ. Radiofizika, 14 (1971), 1353 (Russian); Radiophys. Quant. Electron., 14 (1974), 1062 | DOI
[38] V. E. Zakharov, “Collapse and Self-Focusing of Langmuir Waves”, Handbook of Plasma Physics, Basic Plasma Physics, 2, eds. A. A. Galeev, R. N. Sudan, Elsevier, North-Holland, 1984
[39] S. K. Turitsyn, “Nonstable Solitons and Sharp Criteria for Wave Collapse”, Phys. Rev. E, 47 (1993), R1316 | MR
[40] N. A. Zharova, A. G. Litvak, V. A. Mironov, “Self-Focusing of Wave Packets and Envelope Shock Formation in Nonlinear Dispersive Media”, Z. Eksp. Teor. Fiz., 130 (2006), 21
[41] A. A. Balakin, A. G. Litvak, V. A. Mironov, S. A. Skobelev, “Structural Features of the Self-Action Dynamics of Ultrashort Electromagnetic Pulses”, Zh. Eksp. Teor. Fiz., 131 (2007), 408
[42] Sov. Phys. JETP, 61 (1985), 228 | MR