On contraction properties for products of Markov driven random matrices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 457-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe contraction properties on projective spaces for products of matrices governed by Markov chains which satisfy strong mixing conditions. Assuming that the subgroup generated by the corresponding matrices is “large” we show in particular that the top Lyapunov exponent of their product has multiplicity one and we give an exposition of the related results.
@article{JMAG_2008_4_a1,
     author = {Y. Guivarc'h},
     title = {On contraction properties for products of {Markov} driven random matrices},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {457--489},
     publisher = {mathdoc},
     volume = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_a1/}
}
TY  - JOUR
AU  - Y. Guivarc'h
TI  - On contraction properties for products of Markov driven random matrices
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 457
EP  - 489
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_a1/
LA  - en
ID  - JMAG_2008_4_a1
ER  - 
%0 Journal Article
%A Y. Guivarc'h
%T On contraction properties for products of Markov driven random matrices
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 457-489
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_a1/
%G en
%F JMAG_2008_4_a1
Y. Guivarc'h. On contraction properties for products of Markov driven random matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 457-489. http://geodesic.mathdoc.fr/item/JMAG_2008_4_a1/

[1] H. Abels, G. A. Margulis, G. A. Soifer, “Semigroups Containing Proximal Linear Maps”, Israel J. Math., 91 (1995), 1–30 | DOI | MR | Zbl

[2] C. Bonatti, M. Viana, “Lyapunov Exponents with Multiplicity I for Deterministic Products of Matrices”, Ergodic Theory Dyn. Syst., 24:5 (2004), 1295–1330 | DOI | MR | Zbl

[3] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schröedinger Operators, Progress in Probability and Statistics, 8, Birkhäuser, Berlin, 1985 | MR | Zbl

[4] A. Broise, Y. Guivarch, “Exposants Caracéristiques de l'Algorithme de Perron–Jacobi et de la Transformation Associée”, Ann. de l'Institut Fourier, 51:3 (2001), 565–686 | DOI | MR | Zbl

[5] R. Carmona, J. Lacroix, Spectral Theory of Random Schröedinger Operators, Probability and its Applications, Birkhäuser, Berlin, 1990 | MR | Zbl

[6] C. De Calan, J. M. Luck, T. M. Nieuwenhuizen, D. Petritis, “On the Distribution of a Random Variable Occuring in i.i.d Disordered Systems”, J. Phys. A, 18:3 (1985), 501–523 | DOI | MR

[7] Y. Derrienic, Y. Guivarc'h, “Théorème de Renouvellement pour les Groupes non Moyennables”, CRAS Paris Ser. A, 277 (1973), 613–615 | MR

[8] A. Furman, “Random Walks on Groups and Random Transformations”, Handbook on Dynamical Systems, v. 1A, Elsevier, Amsterdam, 2002 | MR

[9] H. Furstenberg, “Non Commuting Random Products”, TAMS, 108:3 (1963), 377–428 | DOI | MR | Zbl

[10] H. Furstenberg, “Boundary Theory and Stochastic Processes on Homogeneous Spaces”, Proc. Symp. Pure Math., 36 (1972), 193–229 | MR

[11] I. Goldsheid, Y. Guivarc'h, “Zariski Closure and the Dimension of the Gaussian Law of the Product of Random Matrices”, Prob. Theory Related Fields, 105 (1996), 109–142 | DOI | MR | Zbl

[12] I. Goldsheid, G. A. Margulis, “Lyapunov Indices of a Product of Random Matrices”, Russian Math. Surveys, 44:5 (1989), 11–71 | DOI | MR | Zbl

[13] I. Gol'dsheid, S. A. Molcanov, L. A. Pastur, “A pure point spectrum of the stochastic one-dimensional Shrödinger operator”, Funct. Anal. Appl., 11:1 (1977), 1–8 | DOI | MR

[14] Y. Guivarc'h, “Heavy Tail Properties of Stationary Solutions of Multidimensional Stochastic Recursions”, Dynamics and Stochastics, IMS Lecture Notes-Monogr. Ser., 48, 2006, 85–89 | DOI | MR

[15] Y. Guivarc'h, “Sur les Exposants de Lyapunov des Marches Aléatoires”, CRAS Paris, 292 (1981), 327–329 | MR | Zbl

[16] Y. Guivarc'h, “Limit Theorems for Random Walks and Products of Random Matrices”, Proc. CIMPA-TIFR School on Probability Measures on Groups: Recent Directions and Trends, Tata Inst. Fund. Res., Mumbai, 2006, 255–330 | MR | Zbl

[17] Y. Guivarc'h, “On the Spectrum of a Large Subgroup of a Semisimple Group”, J. Modern Dynamics, 2:1 (2008), 15–42 | DOI | MR | Zbl

[18] Y. Guivarc'h, “Renewal Theorems, Products of Random Matrices and Toral Endomorphisms”, Potential Theory in Matsue, Adv. Stud. Pure Math., 44, 2006, 53–66 | MR | Zbl

[19] Y. Guivarc'h, A. Starkov, “Orbits of Linear Group Actions, Random Walk on Homogeneous Spaces and Toral Automorphisms”, Ergodic. Theory Dyn. Syst., 24 (2004), 767–802 | DOI | MR | Zbl

[20] Y. Guivarc'h, L. Ji, J. C. Taylor, “Products of Random Matrices and Convergence Theorems”, Contemp. Math., 59 (1986), 31–54 | DOI | MR

[21] Y. Guivarc'h, A. Raugi, “Frontière de Furstenberg, Propriétés de Contraction et Théorèmes de Convergence”, Z. Wahr. Verw. Geb., 89 (1985), 185–242 | MR

[22] Y. Guivarc'h, R. Shah, “Asymptotic Properties of Convolution Operators and Limits of Triangular Arrays on Locally Compact Groups”, TAMS, 357 (2005), 3683–3723 | DOI | MR | Zbl

[23] Y. Guivarc'h, E. Le Page, “Simplicité de Spectres de Lyapunov et Propriété d'Isolation Spectrale pour une Famille d'Opérateurs de Transfert sur l'Espace Projectif”, RandomWalks and Geometry (Workshop, Vienna, 2001), eds. V. Kaimanovich, De Gruyter, 2004, 181–259 | MR | Zbl

[24] Y. Guivarc'h, J. C. Taylor, Compactifications of Symmetric Spaces, Progress in Math., 156, Birkhauser, Berlin, 1998 | MR | Zbl

[25] Y. Guivarc'h, R. Urban, “Semigroup Actions on Tori and Stationary Measures on Projective Spaces”, Stud. Math., 171:1 (2005), 33–66 | DOI | MR | Zbl

[26] C. T. Ionescu–Tulcea, G. Marinescu, “Théorie Ergodique pour une Classe d'Opérateurs non Complètement Continus”, Ann. Math., 52 (1950), 140–147 | DOI | MR | Zbl

[27] H. Hennion, L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Math., 1766, Springer, Berlin, 2001 | DOI | MR | Zbl

[28] H. Kesten, “Random Difference Equations and Renewal Theory for Products of Random Matrices”, Acta Math., 131 (1973), 323–344 | DOI | MR

[29] B. Kümmerer, H. Maassen, “Purification of Quantum Trajectories”, Dynamics and Stochastics IMS Lecture Notes, Monogr. Ser., 48, 2006, 252–261 | MR | Zbl

[30] E. Le Page, “Régularité du Plus Grand Exposant Caractéristique de Produits de Matrices Aléatoires et Applications”, Ann. IHP (B), 25:2 (1989), 109–142 | MR | Zbl

[31] A. V. Letchikov, “Products of Unimodular Independent Random Matrices”, Russian Math. Surveys, 51:1 (1996), 49–96 | DOI | MR | Zbl

[32] G. A. Margulis, Discrete Subgroups of Semi-Simple Lie Groups, Ergebnisse der Mathematik, 17, Springer, Berlin, 1991 | MR

[33] V. I. Oseledets, “A Multiplicative Ergodic Theorem: Lyapunov Characteristic Exponents for Dynamical Systems”, Trans. Moscow Math. Soc. (AMS), 19 (1968), 197–231 | MR | Zbl

[34] G. R. Prasad, “Regular Elements in Zariski Dense Subgroups”, Quarterly J. Math., 45:180 (1994), 541–545 | MR | Zbl

[35] M. S. Raghunathan, “A Proof of Oseledec Multiplicative Ergodic Theorem”, Israël J. Math., 32 (1979), 356–362 | DOI | MR | Zbl

[36] A. Raugi, “Théorème Ergodique Multiplicatif. Produits de Matrices Aléatoires Indépendantes”, Publ. Inst. Rech. Math. Rennes, 1996/1997, Univ. Rennes I, Rennes, 1996

[37] Ya. G. Sina\"i, “Gibbs Measures in Ergodic Theory”, Russian Math. Surveys, 27:4 (1972), 21–69 | DOI | MR

[38] V. I. Tutubalin, “A Central Limit Theorem for Products of Random Matrices and Some of its Applications”, Symp. Math. Acad. Press, 21 (1979), 101–116 | MR

[39] A. D. Virtser, “Matrix and Operator Random Products”, Theor. Veroyatnosti i Primenen., 24:2 (1979), 361–370 | MR | Zbl