On the Berg--Chen--Ismail theorem and the Nevanlinna--Pick problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 451-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2002, C. Berg, Y. Chen, and M. Ismail found a nice relation between the determinacy of the Hamburger moment problem and asymptotic behavior of the smallest eigenvalues of the corresponding Hankel matrices. We investigate whether an analog of this statement holds for the Nevanlinna–Pick interpolation problem.
@article{JMAG_2008_4_a0,
     author = {L. Golinskii and F. Peherstorfer and P. Yuditskii},
     title = {On the {Berg--Chen--Ismail} theorem and the {Nevanlinna--Pick} problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {451--456},
     publisher = {mathdoc},
     volume = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_a0/}
}
TY  - JOUR
AU  - L. Golinskii
AU  - F. Peherstorfer
AU  - P. Yuditskii
TI  - On the Berg--Chen--Ismail theorem and the Nevanlinna--Pick problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 451
EP  - 456
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_a0/
LA  - en
ID  - JMAG_2008_4_a0
ER  - 
%0 Journal Article
%A L. Golinskii
%A F. Peherstorfer
%A P. Yuditskii
%T On the Berg--Chen--Ismail theorem and the Nevanlinna--Pick problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 451-456
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_a0/
%G en
%F JMAG_2008_4_a0
L. Golinskii; F. Peherstorfer; P. Yuditskii. On the Berg--Chen--Ismail theorem and the Nevanlinna--Pick problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008), pp. 451-456. http://geodesic.mathdoc.fr/item/JMAG_2008_4_a0/

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyed, Edinburgh, 1965 | MR | Zbl

[2] C. Berg, Y. Chen, M. Ismail, “Small Eigenvalues of Large Hankel Matrices: the Indeterminate Case”, Math. Scand., 91:1 (2002), 67–81 | MR | Zbl

[3] L. Carleson, “An Interpolation Problem for Bounded Analytic Functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[4] J. B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, 236, Revised first edition, Springer, New York, 2007, 459 pp. | MR

[5] H. S. Shapiro, A. L. Shields, “On Some Interpolation Problems for Analytic Functions”, Amer. J. Math., 83:3 (1961), 513–532 | DOI | MR | Zbl