On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 468-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an additional regularity of time derivative of the trace of solution to the wave equation on the 3D half space with the homogeneous Neumann boundary conditions.
@article{JMAG_2007_3_a5,
     author = {I. A. Ryzhkova},
     title = {On trace regularity of solutions to a wave equation with homogeneous {Neumann} boundary conditions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {468--489},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a5/}
}
TY  - JOUR
AU  - I. A. Ryzhkova
TI  - On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 468
EP  - 489
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a5/
LA  - en
ID  - JMAG_2007_3_a5
ER  - 
%0 Journal Article
%A I. A. Ryzhkova
%T On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 468-489
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a5/
%G en
%F JMAG_2007_3_a5
I. A. Ryzhkova. On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 468-489. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a5/

[1] I. Ryzhkova, “Stabilization of von Kármán Plate in the Presence of Thermal Effects in the Subsonic Flow of Gas”, J. Math. Anal. Appl., 294:2 (2004), 462–481 | DOI | MR | Zbl

[2] I. Ryzhkova, “Dynamics of a Thermoelastic von Kármán Plate in a Subsonic Gas Flow”, Z. Angew. Math. Phys., 58 (2007), 246–261 | DOI | MR | Zbl

[3] I. Lasiecka, R. Triggiani, “Trace Regularity of the Solution of the Wave Equation with Homogeneous Neumann Boundary Conditions and Compactly Supported Data”, J. Math. Anal. Appl., 141:1 (1989), 49–71 | DOI | MR | Zbl

[4] I. Lasiecka, R. Triggiani, “Regularity Theory of Hyperbolic Equations with Non-homogeneous Neumann Boundary Conditions. II: General Boundary Data”, J. Diff. Eq., 94 (1991), 112–164 | DOI | MR | Zbl

[5] J. Shatah, M. Struwe, Geometric Wave Equations. Courant Lecture Notes in Mathematics, v. 2, New York University, New York, 1998 | MR | Zbl

[6] L. Hörmander, “Estimates for translation invariant operators in $L^p$ spaces”, Acta Math., 104 (1960), 93–140 | DOI | MR | Zbl

[7] J.-L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, v. 1, Dunod–Paris, 1968

[8] L. Lions, “Espaces d'interpolation et domaines puissances fractionnaires d'opérators”, J. Math. Soc. Japan, 14:2 (1962), 233–241 | DOI | MR | Zbl

[9] V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1988 (Russian) | MR

[10] Tables of integral trasforms, ed. A. Erdelyi, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954

[11] H. O. Fattorini, “Ordinary Differential Equations in Linear Topological Spaces. I”, J. Diff. Eq., 5 (1968), 72–105 ; “II”, 6 (1969), 537–565 | DOI | MR | DOI | MR

[12] I. Lasiecka, R. Triggiani, “A Cosine Operator Approach to Modeling $L_2(0,T;L_2(\Gamma))$-boundary input Hyperbolic Equations”, Appl. Math. Optim., 7 (1981), 35–83 | DOI | MR

[13] L. Boutet de Monvel, I. D. Chueshov, “Oscillation of von Karman Plate in a Potential Gas Flow”, Izv. RAN. Ser. Mat., 63 (1999), 219–244 | MR | Zbl