On complete convex solutions of equations similar to the improper affine sphere equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 448-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2007_3_a4,
     author = {V. N. Kokarev},
     title = {On complete convex solutions of equations similar to the improper affine sphere equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {448--467},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a4/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - On complete convex solutions of equations similar to the improper affine sphere equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 448
EP  - 467
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a4/
LA  - ru
ID  - JMAG_2007_3_a4
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T On complete convex solutions of equations similar to the improper affine sphere equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 448-467
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a4/
%G ru
%F JMAG_2007_3_a4
V. N. Kokarev. On complete convex solutions of equations similar to the improper affine sphere equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 448-467. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a4/

[1] V. N. Kokarev, “Obobschenie teoremy Kalabi–Pogorelova”, Tr. Mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, Rostov-na-Donu, 2002, 33–34

[2] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl

[3] E. Calabi, “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[4] A. V. Pogorelov, Mnogomernaya problema Minkovskogo, Nauka, Moskva, 1975 | MR | Zbl

[5] G. Tzitzeika, “Sur une Nouvelle Classe de Surfaces”, Comtes Rendus Acad. Sci. Paris, 145 (1907), 132–133; 146 (1908), 165–166

[6] A. D. Aleksandrov, “Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 1938, no. 2, 227–251 | Zbl

[7] A. V. Pogorelov, Mnogomernoe uravnenie Monzha-Ampera $\det(z_{ij})= \varphi(z_1,\dots,z_n,z,x_1,\dots,x_n)$, Nauka, Moskva, 1988 | MR

[8] P. Lankaster, Teoriya matrits, Nauka, Moskva, 1978 | MR

[9] V. L. Zaguskin, “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, Uspekhi mat. nauk, 13:6 (1958), 89–92 | MR | Zbl

[10] R. Bellman, Vvedenie v teoriyu matrits, Nauka, Moskva, 1976 | MR

[11] V. N. Kokarev, “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Mat. fizika, analiz, geom., 3 (1996), 102–117 | MR | Zbl

[12] E. Calabi, “An Extension of E. Hopf's Maximum Principle with an Application to Riemannian Geometry”, Duce Math. J., 25 (1958), 45–56 | DOI | MR | Zbl

[13] S. Agmon, A. Duglis, L. Nirenberg, Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, v. 1, Izd-vo inostr. lit., Moskva, 1962