Some multidimensional inverse problems of memory determination in hyperbolic equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 411-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local existence and the uniqueness of some multidimensional inverse problems for the second-order hyperbolic integro-differential equations in the class of functions having certain smoothness on time variable and analyticity on a part of spatial variables are proven.
@article{JMAG_2007_3_a2,
     author = {D. K. Durdiev},
     title = {Some multidimensional inverse problems of memory determination in hyperbolic equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {411--423},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
TI  - Some multidimensional inverse problems of memory determination in hyperbolic equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 411
EP  - 423
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a2/
LA  - en
ID  - JMAG_2007_3_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%T Some multidimensional inverse problems of memory determination in hyperbolic equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 411-423
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a2/
%G en
%F JMAG_2007_3_a2
D. K. Durdiev. Some multidimensional inverse problems of memory determination in hyperbolic equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 411-423. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a2/

[1] D. K. Durdiev, “A Multi-Dimensional Inverse Problem for Equation with Memory”, Sib. Mat. J., 35:3 (1994), 574–582 (Russian) | MR | Zbl

[2] A. Lorensi, “An Identification Problem Related to a Nonlinear Hyperbolic Integro-Differential Equation”, Nonlinear Analysis: Theory, Meth., Appl., 22 (1994), 297–321 | MR

[3] J. Janno, L. Von Welfersdorf, “Inverse Problems for Identification of Memory Kernels in Viscoelasticity”, Math. Meth. Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] A. L. Bukhgeim, G. V. Dyatlov, “A Uniqueness in one Inverse Problem of Memory Determination”, Sib. Mat. J., 37:3 (1996), 52–53 (Russian) | MR

[5] V. G. Romanov, Stability in Inverse Problems, Scientific World, Moscow, 2005 (Russian) | MR