Generalization of the H.\,A.~Schwarz theorem on stability of minimal surfaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 399-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved two theorems on stability of minimal submanifolds in a Riemannian space, which can be included in a regular family of minimal submanifolds.
@article{JMAG_2007_3_a1,
     author = {Yuriy Aminov and Joanna Witkowska},
     title = {Generalization of the {H.\,A.~Schwarz} theorem on stability of minimal surfaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {399--410},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a1/}
}
TY  - JOUR
AU  - Yuriy Aminov
AU  - Joanna Witkowska
TI  - Generalization of the H.\,A.~Schwarz theorem on stability of minimal surfaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 399
EP  - 410
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a1/
LA  - en
ID  - JMAG_2007_3_a1
ER  - 
%0 Journal Article
%A Yuriy Aminov
%A Joanna Witkowska
%T Generalization of the H.\,A.~Schwarz theorem on stability of minimal surfaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 399-410
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a1/
%G en
%F JMAG_2007_3_a1
Yuriy Aminov; Joanna Witkowska. Generalization of the H.\,A.~Schwarz theorem on stability of minimal surfaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 399-410. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a1/

[1] H. A. Schwarz, Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1890 | Zbl

[2] L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton, NJ, 1949 | MR | Zbl

[3] J. L. Barbosa, M. do Carmo, “On the Size of a Stable Minimal Surface in $R^3$”, Amer. J. Math., 98:2 (1976), 515–528 | DOI | MR | Zbl

[4] M. do Carmo, C. K. Peng, “Stable Minimal Surfaces in $R^3$ are Planes”, Bull. Amer. Math. Sos., 1:6 (1979), 903–906 | DOI | MR | Zbl

[5] A. V. Pogorelov, “On Stability of Minimal Surfaces”, Dokl. AN USSR, 260:2 (1981), 293–295 (Russian) | MR | Zbl

[6] M. do Carmo, “Stability of Minimal Submanifolds”, Lect. Not. Math., 838 (1984), 129–139 | DOI | MR

[7] M. Micallef, “Stable Minimal Surfaces in Euclidean Space”, J. Diff. Geom., 19 (1984), 57–84 | MR | Zbl

[8] Yu. A. Aminov, Geometry of the Submanifolds, Gordon and Breach Acad. Publ. House, Amsterdam, 2001 | MR | Zbl

[9] D. Fischer-Colbrie, R. Schoen, “The Structure of Complete Stable Minimal Surfaces in 3-Manifolds of Nonnegative Scalar Curvature”, Comm. Pure Appl. Math., 33 (1980), 199–211 | DOI | MR | Zbl

[10] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969 | MR | Zbl

[11] J. D. Moore, “On Stability of Minimal Spheres and a Two-Dimensional Version of Synge's Theorem”, Archiv. der Mat., 44 (1985), 278–281 | DOI | MR | Zbl

[12] J. D. Moore, “Compact Riemannian Manifolds with Positive Curvature Operators”, Bull. AMS, 14 (1986), 279–282 | DOI | MR | Zbl

[13] R. M. Schoen, S.-T. Yau, “Existence of Incompressible Minimal Surfaces and the Topology of Three Dimensional Manifolds with Nonnegative Scalar Curvature”, Ann. Math., 110 (1979), 127–142 | DOI | MR | Zbl

[14] J. Sacks, K. Ulenbeck, “The Existence of Minimal Immersions of 2-Spheres”, Ann. Math., 113 (1981), 1–24 | DOI | MR | Zbl

[15] M. Micallef, J. D. Moore, “Minimal Two-Spheres and the Topology of Manifolds with Positive Curvature on Totally Isotropic Two-Planes”, Ann. Math., 127 (1988), 199–227 | DOI | MR | Zbl

[16] M. J. Micallef, J. G. Wolfson, “The Second Variation of Area of Minimal Surfaces in Four-Manifolds”, Math. Ann., 295 (1993), 245–267 | DOI | MR | Zbl