Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2007_3_a0, author = {Antonio Aviles Lopez and Bernardo Cascales Salinas and Vladimir Kadets and Alexander Leonov}, title = {The {Schur} $\ell_1$ theorem for filters}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {383--398}, publisher = {mathdoc}, volume = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/} }
TY - JOUR AU - Antonio Aviles Lopez AU - Bernardo Cascales Salinas AU - Vladimir Kadets AU - Alexander Leonov TI - The Schur $\ell_1$ theorem for filters JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2007 SP - 383 EP - 398 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/ LA - en ID - JMAG_2007_3_a0 ER -
%0 Journal Article %A Antonio Aviles Lopez %A Bernardo Cascales Salinas %A Vladimir Kadets %A Alexander Leonov %T The Schur $\ell_1$ theorem for filters %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2007 %P 383-398 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/ %G en %F JMAG_2007_3_a0
Antonio Aviles Lopez; Bernardo Cascales Salinas; Vladimir Kadets; Alexander Leonov. The Schur $\ell_1$ theorem for filters. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 383-398. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/
[1] J. Connor, “Two Valued Measures and Summability”, Analysis, 10 (1990), 373–385 | DOI | MR | Zbl
[2] J. Connor, “A Topological and Functional Analytic Approach to Statistical Convergence”, Analysis of Divergence (Orono, ME, 1997); Appl. Numer. Harmon. Anal., Birkhauser, Boston, MA, 1999, 403–413 | MR | Zbl
[3] J. B. Conway, A Course in Functional Analysis, Graduate Texts Math., 96, Springer-Verlag, New York, 1985 | DOI | MR | Zbl
[4] H. Fast, “Sur la Convergence Statistique”, Colloq. Math., 2 (1951), 241–244 | MR | Zbl
[5] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Tracts Math., 84, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[6] M. Ganichev, V. Kadets, “Filter Convergence in Banach Spaces and Generalized Bases”, General Topology in Banach Spaces, ed. Taras Banakh, NOVA Sci. Publ., Huntington–New York, 2001, 61–69 | MR | Zbl
[7] V. Kadets, A. Leonov, “Dominated Convergence and Egorov Theorems for Filter Convergence”, J. Math. Phys., Anal., Geom., 3 (2007), 196–212 | MR | Zbl
[8] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, I, II, Springer-Verlag, Berlin, 1996 | MR | Zbl
[9] A. W. Miller, “There are no $Q$-points in Laver's Model for the Borel Conjecture”, Proc. Amer. Math. Soc., 78:1 (1980), 103–106 | MR | Zbl
[10] S. Todorcevic, Topics in Topology, Lecture Notes Math., 1652, Springer-Verlag, Berlin, 1997 | MR | Zbl
[11] E. L. Wimmers, “The Shelah $P$-point Independence Theorem”, Israel J. Math., 43:1 (1982), 28–48 | DOI | MR | Zbl