The Schur $\ell_1$ theorem for filters
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 383-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2007_3_a0,
     author = {Antonio Aviles Lopez and Bernardo Cascales Salinas and Vladimir Kadets and Alexander Leonov},
     title = {The {Schur} $\ell_1$ theorem for filters},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {383--398},
     publisher = {mathdoc},
     volume = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/}
}
TY  - JOUR
AU  - Antonio Aviles Lopez
AU  - Bernardo Cascales Salinas
AU  - Vladimir Kadets
AU  - Alexander Leonov
TI  - The Schur $\ell_1$ theorem for filters
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 383
EP  - 398
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/
LA  - en
ID  - JMAG_2007_3_a0
ER  - 
%0 Journal Article
%A Antonio Aviles Lopez
%A Bernardo Cascales Salinas
%A Vladimir Kadets
%A Alexander Leonov
%T The Schur $\ell_1$ theorem for filters
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 383-398
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/
%G en
%F JMAG_2007_3_a0
Antonio Aviles Lopez; Bernardo Cascales Salinas; Vladimir Kadets; Alexander Leonov. The Schur $\ell_1$ theorem for filters. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007), pp. 383-398. http://geodesic.mathdoc.fr/item/JMAG_2007_3_a0/

[1] J. Connor, “Two Valued Measures and Summability”, Analysis, 10 (1990), 373–385 | DOI | MR | Zbl

[2] J. Connor, “A Topological and Functional Analytic Approach to Statistical Convergence”, Analysis of Divergence (Orono, ME, 1997); Appl. Numer. Harmon. Anal., Birkhauser, Boston, MA, 1999, 403–413 | MR | Zbl

[3] J. B. Conway, A Course in Functional Analysis, Graduate Texts Math., 96, Springer-Verlag, New York, 1985 | DOI | MR | Zbl

[4] H. Fast, “Sur la Convergence Statistique”, Colloq. Math., 2 (1951), 241–244 | MR | Zbl

[5] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Tracts Math., 84, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[6] M. Ganichev, V. Kadets, “Filter Convergence in Banach Spaces and Generalized Bases”, General Topology in Banach Spaces, ed. Taras Banakh, NOVA Sci. Publ., Huntington–New York, 2001, 61–69 | MR | Zbl

[7] V. Kadets, A. Leonov, “Dominated Convergence and Egorov Theorems for Filter Convergence”, J. Math. Phys., Anal., Geom., 3 (2007), 196–212 | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, I, II, Springer-Verlag, Berlin, 1996 | MR | Zbl

[9] A. W. Miller, “There are no $Q$-points in Laver's Model for the Borel Conjecture”, Proc. Amer. Math. Soc., 78:1 (1980), 103–106 | MR | Zbl

[10] S. Todorcevic, Topics in Topology, Lecture Notes Math., 1652, Springer-Verlag, Berlin, 1997 | MR | Zbl

[11] E. L. Wimmers, “The Shelah $P$-point Independence Theorem”, Israel J. Math., 43:1 (1982), 28–48 | DOI | MR | Zbl