Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2006_2_a4, author = {L. Golinskii and M. Kudryavtsev}, title = {On the discrete spectrum of complex banded matrices}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {396--423}, publisher = {mathdoc}, volume = {2}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_a4/} }
L. Golinskii; M. Kudryavtsev. On the discrete spectrum of complex banded matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 396-423. http://geodesic.mathdoc.fr/item/JMAG_2006_2_a4/
[1] I. Egorova, L. Golinskii, “On Location of Discrete Spectrum for Complex Jacobi Matrices”, Proc. AMS, 133:12 (2005), 3635–3641 | DOI | MR | Zbl
[2] I. Egorova, L. Golinskii, “On limit sets for the Discrete Spectrum of Complex Jacobi Matrices”, Mat. Sb., 196:6 (2005), 43–70 (Russian) | DOI | MR | Zbl
[3] B. S. Pavlov, “On Nonselfadjoint Schrödinger Operator, I”, Probl. Math. Phys., LGU, 1 (1966), 102–132 (Russian) | MR | Zbl
[4] B. S. Pavlov, “On Nonselfadjoint Schrödinger Operator, II”, Probl. Math. Phys., LGU, 1 (1966), 102–132 (Russian) | MR | Zbl
[5] I. Gohberg, M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Nauka, Moscow, 1965 (Russian) | MR | Zbl
[6] O. Perron, “Über Summengleichungen und Poincarésche Differenzengleichingen”, Math. Annal., 84 (1921), 1–15 (German) | DOI | MR | Zbl
[7] L. Carleson, “Sets of Uniqueness for Functions Analytic in the Unit Disc”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl
[8] P. B. Naiman, “On the Theory of Periodic and Limit-Periodic Jacobi Operators”, Sov. Math. Dokl., 3:4 (1962), 383–385 (Russian)
[9] P. B. Naiman, “To the Spectral Theory of the Non-Symmetric Periodic Jacobi Matrices”, Notes Depart. Math. and Mech. Kharkov State Univ. and Kharkov Math. Soc., XXX:4 (1964), 138–151 (Russian) | MR
[10] V. Batchenko, F. Gesztesy, “On the Spectrum of Jacobi Operators with Quasi-periodic Algebro-Geometric Coefficients”, Int. Math. Res. Papers, 10 (2005), 511–563 | DOI | MR | Zbl