Narrow operators on Bochner $L_1$-spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 358-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{JMAG_2006_2_a1,
     author = {K. Boyko and V. Kadets and D. Werner},
     title = {Narrow operators on {Bochner} $L_1$-spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {358--371},
     publisher = {mathdoc},
     volume = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/}
}
TY  - JOUR
AU  - K. Boyko
AU  - V. Kadets
AU  - D. Werner
TI  - Narrow operators on Bochner $L_1$-spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 358
EP  - 371
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/
LA  - en
ID  - JMAG_2006_2_a1
ER  - 
%0 Journal Article
%A K. Boyko
%A V. Kadets
%A D. Werner
%T Narrow operators on Bochner $L_1$-spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 358-371
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/
%G en
%F JMAG_2006_2_a1
K. Boyko; V. Kadets; D. Werner. Narrow operators on Bochner $L_1$-spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 358-371. http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/

[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, v. 1, Coll. Publ., 48, Amer. Math. Soc., Providens, RI, 2000 | MR | Zbl

[2] D. Bilik, V. Kadets, R. Shvidkoy, G. Sirotkin, D. Werner, “Narrow operators on vector-valued sup-normed spaces”, Illinois J. Math., 46 (2002), 421–441 | MR | Zbl

[3] D. Bilik, V. Kadets, R. Shvidkoy, D. Werner, “Narrow operators and the Daugavet property for ultraproducts”, Positivity, 9 (2005), 46–62 | DOI | MR

[4] Y. Ivakhno, V. M. Kadets, “Unconditional sums of spaces with bad projections”, Kharkov Nat. Univ. Vestnik, 645 (2004), 30–35 | Zbl

[5] V. M. Kadets, M. M. Popov, “The Daugavet property for narrow operators in rich subspaces of $C[0;1]$ and $L_1[0;1]$”, St. Petersburg Math. J., 8 (1997), 571–584 | MR

[6] V. M. Kadets, M. M. Popov, “Some stability theorems on narrow operators acting in $L_1$ and $C(K)$”, Mat. Fiz., Analiz, Geom., 10 (2003), 49–60 | MR | Zbl

[7] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, D. Werner, “Banach spaces with the Daugavet property”, Trans. Amer. Math. Soc., 352 (2000), 855–873 | DOI | MR | Zbl

[8] V. M. Kadets, R. V. Shvidkoy, D. Werner, “Narrow operators and rich subspaces of Banach spaces with the Daugavet property”, Stud. Math., 147 (2001), 269–298 | DOI | MR | Zbl

[9] O. Nygaard, D. Werner, “Slices in the unit ball of a uniform algebra”, Arch. Math., 76 (2001), 441–444 | DOI | MR | Zbl

[10] A. M. Plichko, M. M. Popov, “Symmetric function spaces on atomless probability spaces”, Diss. Math., 306 (1990) | MR | Zbl