Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2006_2_a1, author = {K. Boyko and V. Kadets and D. Werner}, title = {Narrow operators on {Bochner} $L_1$-spaces}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {358--371}, publisher = {mathdoc}, volume = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/} }
K. Boyko; V. Kadets; D. Werner. Narrow operators on Bochner $L_1$-spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 358-371. http://geodesic.mathdoc.fr/item/JMAG_2006_2_a1/
[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, v. 1, Coll. Publ., 48, Amer. Math. Soc., Providens, RI, 2000 | MR | Zbl
[2] D. Bilik, V. Kadets, R. Shvidkoy, G. Sirotkin, D. Werner, “Narrow operators on vector-valued sup-normed spaces”, Illinois J. Math., 46 (2002), 421–441 | MR | Zbl
[3] D. Bilik, V. Kadets, R. Shvidkoy, D. Werner, “Narrow operators and the Daugavet property for ultraproducts”, Positivity, 9 (2005), 46–62 | DOI | MR
[4] Y. Ivakhno, V. M. Kadets, “Unconditional sums of spaces with bad projections”, Kharkov Nat. Univ. Vestnik, 645 (2004), 30–35 | Zbl
[5] V. M. Kadets, M. M. Popov, “The Daugavet property for narrow operators in rich subspaces of $C[0;1]$ and $L_1[0;1]$”, St. Petersburg Math. J., 8 (1997), 571–584 | MR
[6] V. M. Kadets, M. M. Popov, “Some stability theorems on narrow operators acting in $L_1$ and $C(K)$”, Mat. Fiz., Analiz, Geom., 10 (2003), 49–60 | MR | Zbl
[7] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, D. Werner, “Banach spaces with the Daugavet property”, Trans. Amer. Math. Soc., 352 (2000), 855–873 | DOI | MR | Zbl
[8] V. M. Kadets, R. V. Shvidkoy, D. Werner, “Narrow operators and rich subspaces of Banach spaces with the Daugavet property”, Stud. Math., 147 (2001), 269–298 | DOI | MR | Zbl
[9] O. Nygaard, D. Werner, “Slices in the unit ball of a uniform algebra”, Arch. Math., 76 (2001), 441–444 | DOI | MR | Zbl
[10] A. M. Plichko, M. M. Popov, “Symmetric function spaces on atomless probability spaces”, Diss. Math., 306 (1990) | MR | Zbl