On the solvability of a class of operator differential equations of the second order on the real axis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 347-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability of the operator dierential equation of the second order with variable coefficients on the real axis in a certain weight space is studied. The main part of the equation is an abstract elliptic equation in Hilbert space. We note that sufficient conditions on operator coefficients of the perturbed part, preserving ellipticity of the equation, are found in the paper, and estimations of the norms of intermediate derivative operators via the main part of the operator differential equation in a certain weight space are also obtained.
@article{JMAG_2006_2_a0,
     author = {A. R. Aliev},
     title = {On the solvability of a class of operator differential equations of the second order on the real axis},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {347--357},
     publisher = {mathdoc},
     volume = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_a0/}
}
TY  - JOUR
AU  - A. R. Aliev
TI  - On the solvability of a class of operator differential equations of the second order on the real axis
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 347
EP  - 357
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_a0/
LA  - en
ID  - JMAG_2006_2_a0
ER  - 
%0 Journal Article
%A A. R. Aliev
%T On the solvability of a class of operator differential equations of the second order on the real axis
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 347-357
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_a0/
%G en
%F JMAG_2006_2_a0
A. R. Aliev. On the solvability of a class of operator differential equations of the second order on the real axis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006), pp. 347-357. http://geodesic.mathdoc.fr/item/JMAG_2006_2_a0/

[1] J.-L. Lions, E. Madjenes, Nonhomogeneous Boundary-Value Problems and their Applications, Mir, Moscow, 1971 (Russian) | Zbl

[2] Yu. A. Dubinskii, “Certain Differential Operator Equations of Arbitrary Order”, Mat. Sb., 90(132):1 (1973), 3–22 (Russian) | MR

[3] S. Ya. Yakubov, Linear Differential Operator Equations and their Applications, Elm, Baku, 1985 (Russian)

[4] S. S. Mirzoyev, On the Correct Solvability of Boundary-Value Problems for the Operator-Differential Equations in Hilbert Space, Dep. VINITI, 03.06.91, No 26708-B91, 1991, 46 pp. (Russian)

[5] S. S. Mirzoyev, Questions of Solvability Theory of the Boundary-Value Problems for the Operator-Differential Equations in Hilbert Space and Spectral Problems, Connected with them, Diss....d. ph.-m. sci., BSU, Baku, 1994, 229 pp. (Russian)