The degenerate Carath\'eodory problem and the elementary multiple factor
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 225-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

The degenerate matricial interpolation Carathéodory problem is solved. To solve this problem we use the V. P. Potapov's approach based on the theory of $J$-expansive matrix-functions. The $\mathcal K$-type subspace technique also plays an important role in these investigations.
@article{JMAG_2005_1_a5,
     author = {N.N. Chernovol},
     title = {The degenerate {Carath\'eodory} problem and the elementary multiple factor},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {225--244},
     publisher = {mathdoc},
     volume = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_a5/}
}
TY  - JOUR
AU  - N.N. Chernovol
TI  - The degenerate Carath\'eodory problem and the elementary multiple factor
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 225
EP  - 244
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_a5/
LA  - en
ID  - JMAG_2005_1_a5
ER  - 
%0 Journal Article
%A N.N. Chernovol
%T The degenerate Carath\'eodory problem and the elementary multiple factor
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 225-244
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_a5/
%G en
%F JMAG_2005_1_a5
N.N. Chernovol. The degenerate Carath\'eodory problem and the elementary multiple factor. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 225-244. http://geodesic.mathdoc.fr/item/JMAG_2005_1_a5/

[1] I. V. Kovalishina, “$J$-expansive matrix-valued functions in the Carathéodory problem”, Dokl. Akad. Nauk ArmSSR, 59:3 (1974), 129–135 (Russian) | MR

[2] I. V. Kovalishina, “Analytical theory of a class of interpolation problems”, Izv. Akad. Nauk USSR, 47:3 (1983), 455–497 (Russian) | MR

[3] C. Carathéodory, “Über den Variabilität der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Mat. Ann., 64 (1907), 95–115 | DOI | MR | Zbl

[4] C. Carathéodory, “Über den Variabilitát der Fourierschen Konstanten von positiven harmonischen Funktionen”, Rendiconti del circolo matematico di Palermo, XXXII, 1911, 193–217 | DOI | Zbl

[5] V. K. Dubovoy, B. Fritzsche, B. Kirstein, Matricial version of the classical Schur problem, B. G. Teubner, Leipzig, 1992

[6] B. Fritzsche, B. Kirstein, “An extension problem for nonnegative hermitian block Toeplitz matrices, IV”, Math. Nachr., 143 (1989), 329–354 | DOI | MR | Zbl

[7] I. V. Kovalishina, V. P. Potapov, “Indefinite metric in the Nevanlinna–Pick problem”, Dokl. Akad. Nauk ArmSSR, 59:1 (1974), 17–22 (Russian) | MR | Zbl

[8] I. V. Kovalishina, “$j$-expansive matrix-valued functions and the classical moment problem”, Dokl. Akad. Nauk ArmSSR, 60:1 (1975), 3–10 (Russian) | MR | Zbl

[9] V. P. Potapov, “General theorems on the structure and the splitting of elementary factors of analytical matrix-valued functions”, Dokl. Akad. Nauk ArmSSR, 48:5 (1969), 257–263 (Russian) | MR | Zbl

[10] A. V. Efimov, V. P. Potapov, “$J$-expansive matrix-valued functions and their role in the analytical theory of electrical circuits”, Usp. Mat. Nauk, 33:1(169) (1973), 65–130 (Russian) | MR | Zbl

[11] I. V. Kovalishina, “Additive decomposition of a reactive matrix-valued functions”, Izv. Akad. Nauk ArmSSR, 6:1 (1971), 43–60 (Russian) | MR | Zbl

[12] V. K. Dubovoy, “Indefinite metric in the interpolation Schur problem for analytic functions, IV”, Teor. Funkts. Funkts. Anal. i ikh Prilozhen., 42 (1984), 46–57 (Russian)

[13] L. A. Galstjan, “Analytical $J$-expansive matrix-valued functions and the Schur problem”, Izv. Akad. Nauk ArmSSR, 12:3 (1977), 204–228 (Russian) | MR

[14] V. K. Dubovoy, “Parametrization of elementary multiple factors of nonfull rank”, Analysis in infinite-dimensional spaces and operator theory, Naukova Dumka, Kiev, 1983, 54–68 (Russian)