Subharmonic almost periodic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 209-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that almost periodicity in the sense of distributions coincides with almost periodicity with respect to Stepanov's metric for the class of subharmonic functions in a strip $z\in\mathbb C:a\mathrm{Im}\,z$. We also prove that Fourier coefficients of these functions are continuous functions in Imz. Further, if the logarithm of a subharmonic almost periodic function is a subharmonic function, then it is almost periodic.
@article{JMAG_2005_1_a4,
     author = {A. V. Rakhnin and S. Yu. Favorov},
     title = {Subharmonic almost periodic functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_a4/}
}
TY  - JOUR
AU  - A. V. Rakhnin
AU  - S. Yu. Favorov
TI  - Subharmonic almost periodic functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 209
EP  - 224
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_a4/
LA  - en
ID  - JMAG_2005_1_a4
ER  - 
%0 Journal Article
%A A. V. Rakhnin
%A S. Yu. Favorov
%T Subharmonic almost periodic functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 209-224
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_a4/
%G en
%F JMAG_2005_1_a4
A. V. Rakhnin; S. Yu. Favorov. Subharmonic almost periodic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 209-224. http://geodesic.mathdoc.fr/item/JMAG_2005_1_a4/