Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2005_1_a2, author = {V. I. Diskant}, title = {Improvements of the analogy isoperimetric inequality and the theorem of stability of its extremal solution}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {182--191}, publisher = {mathdoc}, volume = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_a2/} }
TY - JOUR AU - V. I. Diskant TI - Improvements of the analogy isoperimetric inequality and the theorem of stability of its extremal solution JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2005 SP - 182 EP - 191 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JMAG_2005_1_a2/ LA - ru ID - JMAG_2005_1_a2 ER -
%0 Journal Article %A V. I. Diskant %T Improvements of the analogy isoperimetric inequality and the theorem of stability of its extremal solution %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2005 %P 182-191 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JMAG_2005_1_a2/ %G ru %F JMAG_2005_1_a2
V. I. Diskant. Improvements of the analogy isoperimetric inequality and the theorem of stability of its extremal solution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 182-191. http://geodesic.mathdoc.fr/item/JMAG_2005_1_a2/
[1] K. Leichtweis, Convex sets, Nauka, Moscow, 1985 (Russian) | MR | Zbl
[2] H. Busemann, Convex surfaces, Nauka, Moscow, 1964 (Russian) | MR | Zbl
[3] H. Hadwiger, Lectures about volume, area surface and isoperimetry, Nauka, Moscow, 1966 (Russian) | MR | Zbl
[4] T. Bonnesen, W. Fenchel, Theory of convex bodies, Fazis, Moscow, 2002, 210 pp. (Russian)
[5] V. Diskant, “Refinements of the isoperimetric inequality and stability theorems in the theory of convex bodies”, Tr. Inst. Mat. Nauka, 14, Novosibirsk, 1989, 98–132 (Russian) | MR | Zbl
[6] A. Alexandrov, “New inequalities between mixed volumes and its applications”, Mat. sb., 2(44):6 (1937), 1205–1235 (Russian)
[7] V. Diskant, “About the behavior of isoperimetric difference when turning to parallel body and proving the generalized inequality of Hadwiger”, Mat. fiz., analiz, geom., 10 (2003), 40–48 (Russian) | MR | Zbl
[8] Ju. Burago, V. Zalgaller, Geometric Inequalities, Nauka, Leningrad, 1980 (Russian) | MR | Zbl