Admissible transformations of measures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 155-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a topological semigroup $G$ acts on a topological space $X$. A transformation $g\in G$ is called an admissible (partially admissible, singular, equivalent, invariant) transform for $\mu$ relative to $\nu$ if $\mu_g\ll\nu$ (accordingly: $\mu_g\not\perp\nu$, $\mu_g\perp\nu$, $\mu_g\sim\nu$, $\mu_g=c\cdot\nu$), where $\mu_g(E):=\mu(g^{-1}E)$. We denote its collection by $A(\mu|\nu)$ (accordingly: $AP(\mu|\nu)$, $S(\mu|\nu)$, $E(\mu|\nu)$, $I(\mu|\nu)$). The algebraic and the measure theoretical properties of these sets are studied. It is done the Lebesgue-type decomposition. If $G=X$ is a locally compact group, we give some informations about the measure theoretical size of $A(\mu)$.
@article{JMAG_2005_1_a1,
     author = {S. S. Gabrielyan},
     title = {Admissible transformations of measures},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {155--181},
     publisher = {mathdoc},
     volume = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_a1/}
}
TY  - JOUR
AU  - S. S. Gabrielyan
TI  - Admissible transformations of measures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 155
EP  - 181
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_a1/
LA  - ru
ID  - JMAG_2005_1_a1
ER  - 
%0 Journal Article
%A S. S. Gabrielyan
%T Admissible transformations of measures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 155-181
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_a1/
%G ru
%F JMAG_2005_1_a1
S. S. Gabrielyan. Admissible transformations of measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005), pp. 155-181. http://geodesic.mathdoc.fr/item/JMAG_2005_1_a1/