A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005), pp. 187-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Brownian motion of a classical particle can be described by a Fokker–Planck-like equation. Its solution is a probability density in phase space. By integrating this density w.r.t. the velocity, we get the spatial distribution or concentration. We reduce the $2n$-dimensional problem to an $n$-dimensional diffusion-like equation in a rigorous way, i.e., without further assumptions in the case of general Brownian motion, when the particle is forced by linear friction and homogeneous random (non-Gaussian) noise. Using a representation with pseudodifferential operators, we derive a reduced diffusion-like equation, which turns out to be non-autonomous and can become elliptic for long times and hyperbolic for short times, although the original problem was time homogeneous. Moreover, we consider some examples: the classical Brownian motion (Gaussian noise), the Cauchy noise case (which leads to an autonomous diffusion-like equation), and the free particle case.
@article{JMAG_2005_12_a4,
     author = {Holger Stephan},
     title = {A dimension-reduced description of general {Brownian} motion by non-autonomous diffusion-like equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {187--202},
     publisher = {mathdoc},
     volume = {12},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_12_a4/}
}
TY  - JOUR
AU  - Holger Stephan
TI  - A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 187
EP  - 202
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_12_a4/
LA  - en
ID  - JMAG_2005_12_a4
ER  - 
%0 Journal Article
%A Holger Stephan
%T A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 187-202
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2005_12_a4/
%G en
%F JMAG_2005_12_a4
Holger Stephan. A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005), pp. 187-202. http://geodesic.mathdoc.fr/item/JMAG_2005_12_a4/