Zeroes of holomorphic functions with almost--periodic modulus
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 507-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give necessary and sufficient conditions for a divisor in a tube domain to be the divisor of a holomorphic function with almost–periodic modulus.
@article{JMAG_2004_11_a9,
     author = {S. Yu. Favorov},
     title = {Zeroes of holomorphic functions with almost--periodic modulus},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {507--517},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_a9/}
}
TY  - JOUR
AU  - S. Yu. Favorov
TI  - Zeroes of holomorphic functions with almost--periodic modulus
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 507
EP  - 517
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_a9/
LA  - en
ID  - JMAG_2004_11_a9
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%T Zeroes of holomorphic functions with almost--periodic modulus
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 507-517
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_a9/
%G en
%F JMAG_2004_11_a9
S. Yu. Favorov. Zeroes of holomorphic functions with almost--periodic modulus. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 507-517. http://geodesic.mathdoc.fr/item/JMAG_2004_11_a9/