On conditionally convergent series
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 470-483.

Voir la notice de l'article provenant de la source Math-Net.Ru

The most interesting result of the paper is that for any two complementary subsets $A$ and $B$ of the set of positive odd integers there exists such a sequence $\{\alpha_k\}_{k=1}^\infty\subset[-1,1]$ that \begin{gather*} \forall\,m\in A:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is convergent and} \\ \forall\,m\in B:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is divergent.} \end{gather*} Using the map $\overrightarrow{x}\longmapsto\|\overrightarrow{x}\|^{\lambda}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ as a substitute of the power function, one can prove similar results for vectors and positive not necessarily integer exponents $\lambda$.
@article{JMAG_2004_11_a6,
     author = {Vladimir Logvinenko},
     title = {On conditionally convergent series},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {470--483},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_a6/}
}
TY  - JOUR
AU  - Vladimir Logvinenko
TI  - On conditionally convergent series
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 470
EP  - 483
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_a6/
LA  - en
ID  - JMAG_2004_11_a6
ER  - 
%0 Journal Article
%A Vladimir Logvinenko
%T On conditionally convergent series
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 470-483
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_a6/
%G en
%F JMAG_2004_11_a6
Vladimir Logvinenko. On conditionally convergent series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 470-483. http://geodesic.mathdoc.fr/item/JMAG_2004_11_a6/