A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers.~I
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 434-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that Bernoulli scheme of independent trials with two outcomes is connected with the binomial coefficients. The aim of this paper is to indicate stochastic processes which are connected with the $q$-polynomial coefficients (in particular, with the $q$-binomial coefficients, or the Gaussian polynomials), Stirling numbers of the first and the second kind, and Euler numbers in a natural way. A probabilistic approach allows us to give very simple proofs of some identities for these coefficients.
@article{JMAG_2004_11_a4,
     author = {A. Il'inskii},
     title = {A probabilistic approach to $q$-polynomial coefficients, {Euler} and {Stirling} {numbers.~I}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {434--448},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_a4/}
}
TY  - JOUR
AU  - A. Il'inskii
TI  - A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers.~I
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 434
EP  - 448
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_a4/
LA  - en
ID  - JMAG_2004_11_a4
ER  - 
%0 Journal Article
%A A. Il'inskii
%T A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers.~I
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 434-448
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_a4/
%G en
%F JMAG_2004_11_a4
A. Il'inskii. A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers.~I. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 434-448. http://geodesic.mathdoc.fr/item/JMAG_2004_11_a4/