Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 408-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.
@article{JMAG_2004_11_a2,
     author = {Leonid Golinskii},
     title = {Absolutely continuous measures on the unit circle with sparse {Verblunsky} coefficients},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {408--420},
     publisher = {mathdoc},
     volume = {11},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_a2/}
}
TY  - JOUR
AU  - Leonid Golinskii
TI  - Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 408
EP  - 420
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_a2/
LA  - en
ID  - JMAG_2004_11_a2
ER  - 
%0 Journal Article
%A Leonid Golinskii
%T Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 408-420
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_a2/
%G en
%F JMAG_2004_11_a2
Leonid Golinskii. Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004), pp. 408-420. http://geodesic.mathdoc.fr/item/JMAG_2004_11_a2/