Strong asymptotic stability and constructing of stabilizing controls
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 569-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show the role which plays a recent theorem on the strong asymptotic stability in the analysis of the strong stabilizability problem in Hilbert spaces. We consider a control system with skew-adjoint operator and one-dimensional control. We examine in details the property for a linear feedback control to stabilize such a system. A robustness analysis of stabilizing controls is also given.
@article{JMAG_2003_10_a8,
     author = {Grigory M. Sklyar and Alexander V. Rezounenko},
     title = {Strong asymptotic stability and constructing of stabilizing controls},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {569--582},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_a8/}
}
TY  - JOUR
AU  - Grigory M. Sklyar
AU  - Alexander V. Rezounenko
TI  - Strong asymptotic stability and constructing of stabilizing controls
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 569
EP  - 582
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_a8/
LA  - en
ID  - JMAG_2003_10_a8
ER  - 
%0 Journal Article
%A Grigory M. Sklyar
%A Alexander V. Rezounenko
%T Strong asymptotic stability and constructing of stabilizing controls
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 569-582
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_a8/
%G en
%F JMAG_2003_10_a8
Grigory M. Sklyar; Alexander V. Rezounenko. Strong asymptotic stability and constructing of stabilizing controls. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 569-582. http://geodesic.mathdoc.fr/item/JMAG_2003_10_a8/