On real and ``symplectic'' meromorphic plus-matrix-function and corresponding linear fractional transformation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 557-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic result is: if linear fractional transformation with meromorphic in the unit disk nondegenerate matrix of coefficients $A(z)$ maps the class of holomorphic contractive matrix function into itself so that real (symmetric) matrix functions are transformed into real (symmetric) matrix functions then there exists a mеromorphic scalar function $\rho(z)$ such that $\rho^{-1}(z) A(z)$ is $j$-expansive real (“symplectic” or “antisymplectic”) matrix function.
@article{JMAG_2003_10_a7,
     author = {L. A. Simakova},
     title = {On real and ``symplectic'' meromorphic plus-matrix-function and corresponding linear fractional transformation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {557--568},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_a7/}
}
TY  - JOUR
AU  - L. A. Simakova
TI  - On real and ``symplectic'' meromorphic plus-matrix-function and corresponding linear fractional transformation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 557
EP  - 568
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_a7/
LA  - ru
ID  - JMAG_2003_10_a7
ER  - 
%0 Journal Article
%A L. A. Simakova
%T On real and ``symplectic'' meromorphic plus-matrix-function and corresponding linear fractional transformation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 557-568
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_a7/
%G ru
%F JMAG_2003_10_a7
L. A. Simakova. On real and ``symplectic'' meromorphic plus-matrix-function and corresponding linear fractional transformation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 557-568. http://geodesic.mathdoc.fr/item/JMAG_2003_10_a7/