About integral of Weber--Shafheitlin
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 481-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_{\lambda}^{p}$ be the function space at half-line with the norm $\|f\|_{p,\lambda}^{p}= \int_{0}^{\infty}|f(x)|^{p}x^{-\lambda}\,dx$. In the work the operators $A_{\mu}$ of multiplicative convolution with Bessel function $ A_{\mu}f(x)=\int_{0}^{\infty}J_{\mu}(xt)f(t)t^{-\lambda}\,dt$ are considered and their following propeties are proved. The operators $A_{\mu}$, $\mu \geq 0$, are bounded on $L^{2}(\lambda)$, $-1\leq \lambda\leq 1$. $A_{\mu}$, $\mu>0$, are bounded on $L_{\lambda}^{p}$, $1\leq p\leq\infty$, but $A_{0}$ is unbounded on $L_{1}^{p}$, $1\leq p\leq \infty$. The operators $A_{\mu}$ are unbounded on $ L_{\lambda}^{p}$ $p\not= 2$, $1\leq \lambda 1$. With some relations between values $(\mu, \nu, \lambda, p)$ the products $A_{\nu}A_{\mu}$ are bounded on $L_{\lambda}^{p}$.
@article{JMAG_2003_10_a2,
     author = {I. S. Belov},
     title = {About integral of {Weber--Shafheitlin}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {481--489},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_a2/}
}
TY  - JOUR
AU  - I. S. Belov
TI  - About integral of Weber--Shafheitlin
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 481
EP  - 489
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_a2/
LA  - ru
ID  - JMAG_2003_10_a2
ER  - 
%0 Journal Article
%A I. S. Belov
%T About integral of Weber--Shafheitlin
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 481-489
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_a2/
%G ru
%F JMAG_2003_10_a2
I. S. Belov. About integral of Weber--Shafheitlin. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 481-489. http://geodesic.mathdoc.fr/item/JMAG_2003_10_a2/