The spectrum of Schr\"odinger operators with quasi-periodic algebro-geometric KdV potentials
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 447-468.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this announcement we report on a recent characterization of the spectrum of one-dimensional Schrödinger operators $H=-d^2/dx^2+V$ in $L^2(\mathbb R;dx)$ with quasi-periodic complex-valued algebro-geometric potentials $V$ (i.e., potentials $V$ which satisfy one (and hence infinitely many) equation(s) of the stationary Korteweg–de Vries (KdV) hierarchy) associated with nonsingular hyperelliptic curves in [1]. It turns out the spectrum of $H$ coincides with the conditional stability set of $H$ and that it can explicitly be described in terms of the mean value of the inverse of the diagonal Green's function of $H$. As a result, the spectrum of $H$ consists of finitely many simple analytic arcs and one semi-infinite simple analytic arc in the complex plane. Crossings as well as confluences of spectral arcs are possible and discussed as well. These results extend to the $L^p(\mathbb R;dx)$-setting for $p\in [1,\infty)$.
@article{JMAG_2003_10_a0,
     author = {Vladimir Batchenko and Fritz Gesztesy},
     title = {The spectrum of {Schr\"odinger} operators with quasi-periodic algebro-geometric {KdV} potentials},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {447--468},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_a0/}
}
TY  - JOUR
AU  - Vladimir Batchenko
AU  - Fritz Gesztesy
TI  - The spectrum of Schr\"odinger operators with quasi-periodic algebro-geometric KdV potentials
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 447
EP  - 468
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_a0/
LA  - en
ID  - JMAG_2003_10_a0
ER  - 
%0 Journal Article
%A Vladimir Batchenko
%A Fritz Gesztesy
%T The spectrum of Schr\"odinger operators with quasi-periodic algebro-geometric KdV potentials
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 447-468
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_a0/
%G en
%F JMAG_2003_10_a0
Vladimir Batchenko; Fritz Gesztesy. The spectrum of Schr\"odinger operators with quasi-periodic algebro-geometric KdV potentials. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 447-468. http://geodesic.mathdoc.fr/item/JMAG_2003_10_a0/