On the growth of meromorphic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 642-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtained the estimates for upper and lower logarithmic density of the set $A(\gamma)=\Bigl\{r:\sum\limits_{k=1}^q\mathcal L(r,a_k,f)2B(\gamma,\Delta(0,f'))T(r,f)\Bigr\}$, where $B(\gamma,\Delta)$ is Shea's constant, $\Delta(0,f')$ is Valiron's deficiency of the derivative of the function $f$ at zero.
@article{JMAG_2002_9_a6,
     author = {I. I. Marchenko},
     title = {On the growth of meromorphic functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {642--647},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_a6/}
}
TY  - JOUR
AU  - I. I. Marchenko
TI  - On the growth of meromorphic functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 642
EP  - 647
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_a6/
LA  - en
ID  - JMAG_2002_9_a6
ER  - 
%0 Journal Article
%A I. I. Marchenko
%T On the growth of meromorphic functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 642-647
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_a6/
%G en
%F JMAG_2002_9_a6
I. I. Marchenko. On the growth of meromorphic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 642-647. http://geodesic.mathdoc.fr/item/JMAG_2002_9_a6/