On polinomial approximation of entire transcendental functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 595-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

M.N. Sheremeta introduced the notion of the $\alpha$-order $\rho_{\alpha}$ so that to extend the scale of growth of maximum modulus of entire transcendental functions, having the order zero $\rho=0$. He established the relation of Hadamard type too. In this article the limiting equalities, connecting the indicated characteristic of an entire function with the sequence of its best polynomial approximation in some Banach spaces of functions analytic in the unit disk have been obtained.
@article{JMAG_2002_9_a3,
     author = {S. B. Vakarchuk and S. I. Zheer},
     title = {On polinomial approximation of entire transcendental functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {595--603},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - S. I. Zheer
TI  - On polinomial approximation of entire transcendental functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 595
EP  - 603
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_a3/
LA  - ru
ID  - JMAG_2002_9_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A S. I. Zheer
%T On polinomial approximation of entire transcendental functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 595-603
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_a3/
%G ru
%F JMAG_2002_9_a3
S. B. Vakarchuk; S. I. Zheer. On polinomial approximation of entire transcendental functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 595-603. http://geodesic.mathdoc.fr/item/JMAG_2002_9_a3/