On sectorial block operator matrices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 533-571.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with linear operators in the Hilbert space $H_1\oplus H_2$ defined by matrices with, in general, unbounded entries. Criterions for such operators to be sectorial with the vertex at the origin are obtained, parametrization of all its m-accretive and m-sectorial extensions and a description of root subspaces of such extensions by means of the transfer function (Schur complement) and its derivatives are given. Analytical properties of the Friedrichs extensions of the transfer function of a sectorial block operator matrix are established.
@article{JMAG_2002_9_a1,
     author = {Yury Arlinskii},
     title = {On sectorial block operator matrices},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {533--571},
     publisher = {mathdoc},
     volume = {9},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_a1/}
}
TY  - JOUR
AU  - Yury Arlinskii
TI  - On sectorial block operator matrices
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 533
EP  - 571
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_a1/
LA  - en
ID  - JMAG_2002_9_a1
ER  - 
%0 Journal Article
%A Yury Arlinskii
%T On sectorial block operator matrices
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 533-571
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_a1/
%G en
%F JMAG_2002_9_a1
Yury Arlinskii. On sectorial block operator matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002), pp. 533-571. http://geodesic.mathdoc.fr/item/JMAG_2002_9_a1/