The Riemannian manifolds with an axiom of hyperspheres
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001), pp. 392-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalization of an axiom of spheres is proposed. It is shown, that the set of the Riemannian spaces satisfying to a proposed axiom, is wider set of spaces satisfying to a generalized axiom of planes. It is found structure of a tensor of a curvature of manifolds with a generalized axiom of spheres. It is found also structure of the Riemannian metric of manifolds, satisfying to generalized axiom of spheres at some natural additional conditions. It is given expression of the Riemannian metric of space with an axiom of $l$-hyperspheres without the additional conditions at rather large $l$.
@article{JMAG_2001_8_a3,
     author = {S. I. Okrut},
     title = {The {Riemannian} manifolds with an axiom of hyperspheres},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {392--418},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_a3/}
}
TY  - JOUR
AU  - S. I. Okrut
TI  - The Riemannian manifolds with an axiom of hyperspheres
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 392
EP  - 418
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_2001_8_a3/
LA  - ru
ID  - JMAG_2001_8_a3
ER  - 
%0 Journal Article
%A S. I. Okrut
%T The Riemannian manifolds with an axiom of hyperspheres
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 392-418
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_2001_8_a3/
%G ru
%F JMAG_2001_8_a3
S. I. Okrut. The Riemannian manifolds with an axiom of hyperspheres. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001), pp. 392-418. http://geodesic.mathdoc.fr/item/JMAG_2001_8_a3/