Completions with respect to total nonnorming subspaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 317-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of completions of Banach spaces with respect to total nonnorming subspaces of dual spaces is studied. The obtained results imply, in particular, that such completions can be non-isomorphic to quotients of the space. In a separable case any one of the completions is isomorphic to a completion of $l_1$.
@article{JMAG_1999_6_a8,
     author = {M. I. Ostrovskii},
     title = {Completions with respect to total nonnorming subspaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {317--322},
     publisher = {mathdoc},
     volume = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_a8/}
}
TY  - JOUR
AU  - M. I. Ostrovskii
TI  - Completions with respect to total nonnorming subspaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 317
EP  - 322
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_a8/
LA  - en
ID  - JMAG_1999_6_a8
ER  - 
%0 Journal Article
%A M. I. Ostrovskii
%T Completions with respect to total nonnorming subspaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 317-322
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_a8/
%G en
%F JMAG_1999_6_a8
M. I. Ostrovskii. Completions with respect to total nonnorming subspaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 317-322. http://geodesic.mathdoc.fr/item/JMAG_1999_6_a8/