Stability of Minkowski and Brunn's equations solutions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 245-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem of stability of Minkowski and Brunn's equations solutions are proved. Theorem 1. If $$ V_1^n(A, X)-V(X)V^{n-1}(A)\varepsilon,\ \ 0\leq\varepsilon\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0, $$ then $\delta(sA, X)$. Theorem 2. If $$ V^{1/n}(H_{\frac{1}{2}})-\frac{1}{2}V^{1/n}(A)-\frac{1}{2}V^{1/n}(X)\varepsilon,\ \ 0\leq\varepsilon\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0, $$ then $\delta(sA, X)$. In these theorems $A$ and $X$ — convex bodies in $R^n$, $V(A)$ — volume $A$, $V_1(A, X)$ — the first mixed volume $A$ and $X$, $H_{\frac{1}{2}}=\frac{1}{2}A+\frac{1}{2}X$, $\delta(sA, X)$ — deflection of $sA$ and $X$ bodies, $C$ and $\varepsilon_0$ are determined by task $s$, $n$, $r_A$ and $R_A$ ($r_A$ — radius of ball entered in $A$, $R_A$ — described about $A$).
@article{JMAG_1999_6_a4,
     author = {V. I. Diskant},
     title = {Stability of {Minkowski} and {Brunn's} equations solutions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {245--252},
     publisher = {mathdoc},
     volume = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_a4/}
}
TY  - JOUR
AU  - V. I. Diskant
TI  - Stability of Minkowski and Brunn's equations solutions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 245
EP  - 252
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_a4/
LA  - ru
ID  - JMAG_1999_6_a4
ER  - 
%0 Journal Article
%A V. I. Diskant
%T Stability of Minkowski and Brunn's equations solutions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 245-252
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_a4/
%G ru
%F JMAG_1999_6_a4
V. I. Diskant. Stability of Minkowski and Brunn's equations solutions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 245-252. http://geodesic.mathdoc.fr/item/JMAG_1999_6_a4/