Bernstein space $B_\sigma$ as a Banach space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 372-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bernstein space $B_\sigma$ consists of all exponential type, less than or equal to $\sigma$, entire functions bounded on $\mathbf R$. $B_\sigma$ equipped with a sup-norm is proved to be a non-separable Banach space non-isomorphic to $\ell_{\infty}$ but involving an isometric copy of $\ell_{\infty}$. $B_\sigma$ is proved to be non-complemented in $B_\rho$, $\sigma\rho$; $B_\sigma$ is also proved to be isometric to a second dual of its subspace $B_\sigma^0$ consisting of functions tending to zero along $\mathbf R$. The coincidence of weak and norm convergence of sequences (Schur property) in the dual of $B_\sigma^0$ is proved.
@article{JMAG_1999_6_a12,
     author = {B. M. Shumyatskiy},
     title = {Bernstein space $B_\sigma$ as a {Banach} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {372--384},
     publisher = {mathdoc},
     volume = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_a12/}
}
TY  - JOUR
AU  - B. M. Shumyatskiy
TI  - Bernstein space $B_\sigma$ as a Banach space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 372
EP  - 384
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_a12/
LA  - ru
ID  - JMAG_1999_6_a12
ER  - 
%0 Journal Article
%A B. M. Shumyatskiy
%T Bernstein space $B_\sigma$ as a Banach space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 372-384
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_a12/
%G ru
%F JMAG_1999_6_a12
B. M. Shumyatskiy. Bernstein space $B_\sigma$ as a Banach space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 372-384. http://geodesic.mathdoc.fr/item/JMAG_1999_6_a12/