A representation of linear functionals on some class of holomorphic functions in the unit disk
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 361-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given for the dual space to the class of holomorphic functions in $\mathbb D=\{z:|z|1\}$ such that $\lim\limits_{r\to 1-0}\frac{(1-r)^2}{\omega(1-r)}D^{\alpha+2}(f(re^{i\varphi}))=0$, uniformly in $\varphi$, $\omega(\delta)$ being a function of modulus of continuity type, $\alpha\geq0$. The result extends a known Duren–Romberg–Shields theorem on the dual space to the class $\lambda_{\alpha}^{(n)}$, $0\alpha\le1$, $n\geq0$.
@article{JMAG_1999_6_a11,
     author = {R. F. Shamoyan},
     title = {A representation of linear functionals on some class of holomorphic functions in the unit disk},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {361--371},
     publisher = {mathdoc},
     volume = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_a11/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - A representation of linear functionals on some class of holomorphic functions in the unit disk
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 361
EP  - 371
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_a11/
LA  - ru
ID  - JMAG_1999_6_a11
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T A representation of linear functionals on some class of holomorphic functions in the unit disk
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 361-371
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_a11/
%G ru
%F JMAG_1999_6_a11
R. F. Shamoyan. A representation of linear functionals on some class of holomorphic functions in the unit disk. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999), pp. 361-371. http://geodesic.mathdoc.fr/item/JMAG_1999_6_a11/