On an isometric representation with the maximal set of spectral subspaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 297-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved the theorem. Let $G$ be a locally compact noncompact separable Abelian group. Then there exists an isometric representation of the group $G$ in a Banach space $X$ without eigenvectors for which any spectral subspace $L(K)\ne\{0\}$ if $K$ contains a nonempty perfect subset.
@article{JMAG_1998_5_a9,
     author = {G. M. Feldman and G. Muraz},
     title = {On an isometric representation with the maximal set of spectral subspaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {297--303},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a9/}
}
TY  - JOUR
AU  - G. M. Feldman
AU  - G. Muraz
TI  - On an isometric representation with the maximal set of spectral subspaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 297
EP  - 303
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a9/
LA  - en
ID  - JMAG_1998_5_a9
ER  - 
%0 Journal Article
%A G. M. Feldman
%A G. Muraz
%T On an isometric representation with the maximal set of spectral subspaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 297-303
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a9/
%G en
%F JMAG_1998_5_a9
G. M. Feldman; G. Muraz. On an isometric representation with the maximal set of spectral subspaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 297-303. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a9/