Monge--Amp\`ere operators and Jessen functions of holomorphic almost periodic mappings
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 274-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a holomorphic almost periodic mapping $f$ from a tube domain of ${\mathbf C}^n$ into ${\mathbf C}^q$, the properties of its Jessen function, i.e., the mean value of the function $\log|f|^2$, are studied. In particular, certain relations between the Jessen function and behavior of the mapping and its zero set are obtained. To this end certain operators $\Phi_l$ on plurisubharmonic functions are introduced in a way that for a smooth function $u$, $$ (\Phi_l[u])^l\,(dd^c|z|^2)^n=(dd^cu)^l\wedge(dd^c|z|^2)^{n-l}. $$
@article{JMAG_1998_5_a8,
     author = {Alexander Rashkovskii},
     title = {Monge--Amp\`ere operators and {Jessen} functions of holomorphic almost periodic mappings},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {274--296},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a8/}
}
TY  - JOUR
AU  - Alexander Rashkovskii
TI  - Monge--Amp\`ere operators and Jessen functions of holomorphic almost periodic mappings
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 274
EP  - 296
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a8/
LA  - en
ID  - JMAG_1998_5_a8
ER  - 
%0 Journal Article
%A Alexander Rashkovskii
%T Monge--Amp\`ere operators and Jessen functions of holomorphic almost periodic mappings
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 274-296
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a8/
%G en
%F JMAG_1998_5_a8
Alexander Rashkovskii. Monge--Amp\`ere operators and Jessen functions of holomorphic almost periodic mappings. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 274-296. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a8/