Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 250-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial boundary value problem for semilinear parabolic equation $$ \frac{\partial u^\varepsilon}{\partial t}-\sum_{i,j=1}^n \frac{\partial}{\partial x_i}\left(a^\varepsilon_{ij}(x)\frac{\partial u^\varepsilon}{\partial x_j}\right)+f(u^\varepsilon)=h^\varepsilon (x), \qquad x\in \Omega, \quad t\in(0,T), $$ with the coefficients $a^\varepsilon_{ij}(x)$ depending on a small parameter $\varepsilon$ is considered. We suppose that $a^\varepsilon_{ij}(x)$ are of the order of $\varepsilon^{3+\gamma}$ $(0\le \gamma1)$ on a set of spherical annuluses $G^\alpha_\varepsilon$ of a thickness $d_\varepsilon = d\varepsilon^{2+\gamma}$. The annuluses are periodically with a period $\varepsilon$ distributed in $\Omega$. On the set $\Omega\setminus U_\alpha G^\alpha_\varepsilon$ these coefficients are constants. We study the asymptotical behaviour of the solutions $u^\varepsilon(x,t)$ of the problem as $\varepsilon \rightarrow 0$. It is shown that the asymptotic behaviour of the solutions is described by a system of a parabolic p.d.e. coupled with an o.d.e.
@article{JMAG_1998_5_a7,
     author = {L. Pankratov},
     title = {Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {250--273},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a7/}
}
TY  - JOUR
AU  - L. Pankratov
TI  - Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 250
EP  - 273
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a7/
LA  - en
ID  - JMAG_1998_5_a7
ER  - 
%0 Journal Article
%A L. Pankratov
%T Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 250-273
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a7/
%G en
%F JMAG_1998_5_a7
L. Pankratov. Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 250-273. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a7/