An analogue of the second main theorem for uniform metric
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 212-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a meromorphic function of finite lower order $\lambda$, and order $\rho$, $T(r,f)$ be Nevanlinna's characteristic, $0\gamma\infty$, $B(\gamma)$ be Paley's constant. We obtain the estimates for upper and lower logarithmic density of set $$ E(\gamma)=\{r:\sum\limits_{k=1}^{q}\log^{+}\max\limits_{|z|=r}|f(z)-a_k|^{-1}2B(\gamma)T(r,f)\}. $$ It is shown that $$ \overline{log dens}E(\gamma)\ge 1-\frac{\lambda}{\gamma}, \quad \underline{log dens}E(\gamma) \ge 1-\frac{\rho}{\gamma}\,. $$
@article{JMAG_1998_5_a5,
     author = {I. I. Marchenko},
     title = {An analogue of the second main theorem for uniform metric},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a5/}
}
TY  - JOUR
AU  - I. I. Marchenko
TI  - An analogue of the second main theorem for uniform metric
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 212
EP  - 227
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a5/
LA  - ru
ID  - JMAG_1998_5_a5
ER  - 
%0 Journal Article
%A I. I. Marchenko
%T An analogue of the second main theorem for uniform metric
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 212-227
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a5/
%G ru
%F JMAG_1998_5_a5
I. I. Marchenko. An analogue of the second main theorem for uniform metric. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 212-227. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a5/