Rotary transformation of surfaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 203-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new type of infinitesimal transformations of surfaces in the Euclidean space $E^3$ is defined by virtue of rotary transformation the image of each geodesic curve is an isoperimetric extremal of the rotation (in the general approximation). The paper closer deals with the rotary-conformal transformations.
@article{JMAG_1998_5_a4,
     author = {S. G. Leiko},
     title = {Rotary transformation of surfaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {203--211},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a4/}
}
TY  - JOUR
AU  - S. G. Leiko
TI  - Rotary transformation of surfaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 203
EP  - 211
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a4/
LA  - ru
ID  - JMAG_1998_5_a4
ER  - 
%0 Journal Article
%A S. G. Leiko
%T Rotary transformation of surfaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 203-211
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a4/
%G ru
%F JMAG_1998_5_a4
S. G. Leiko. Rotary transformation of surfaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 203-211. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a4/