Closed surfaces in $E^4$ with nonvanishing Whitney's invariant
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 139-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of two-dimensional closed regular orientable surfaces of an arbitrary topological type in $E^4$ that do not have a regular vector field. An example of such surfaces is constructed. Their geometrical properties are investigated.
@article{JMAG_1998_5_a0,
     author = {Yu. A. Aminov and N. V. Manzhos},
     title = {Closed surfaces in $E^4$ with nonvanishing {Whitney's} invariant},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - N. V. Manzhos
TI  - Closed surfaces in $E^4$ with nonvanishing Whitney's invariant
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 139
EP  - 148
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_a0/
LA  - ru
ID  - JMAG_1998_5_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A N. V. Manzhos
%T Closed surfaces in $E^4$ with nonvanishing Whitney's invariant
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 139-148
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_a0/
%G ru
%F JMAG_1998_5_a0
Yu. A. Aminov; N. V. Manzhos. Closed surfaces in $E^4$ with nonvanishing Whitney's invariant. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998), pp. 139-148. http://geodesic.mathdoc.fr/item/JMAG_1998_5_a0/