Regular simplex inscribed into a cube and Hadamard matrix of half-circulant type
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997), pp. 458-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

It's discovered a sufficient condition for existence of the Hadamard matrix of order $4n$ ($n$ – natural number) of half-circulant type, which contains two different circulants of order $2n-1$: right and left one (from here the term). A new method of the Hadamard matrices construction, which is geometrical in point of fact and different from the well-known Williamson method, is received. It's proved as well, that there is the Hadamard matrix of order $2(p+1)$ of half-circulant type, where $p$ is odd prime number, whence it follows, that into $2(p+1)$-dimensional cube one can to inscribe a regular simplex of the same dimension.
@article{JMAG_1997_4_a3,
     author = {A. I. Medianik},
     title = {Regular simplex inscribed into a cube and {Hadamard} matrix of half-circulant type},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {458--471},
     publisher = {mathdoc},
     volume = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_a3/}
}
TY  - JOUR
AU  - A. I. Medianik
TI  - Regular simplex inscribed into a cube and Hadamard matrix of half-circulant type
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 458
EP  - 471
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_a3/
LA  - ru
ID  - JMAG_1997_4_a3
ER  - 
%0 Journal Article
%A A. I. Medianik
%T Regular simplex inscribed into a cube and Hadamard matrix of half-circulant type
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 458-471
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_a3/
%G ru
%F JMAG_1997_4_a3
A. I. Medianik. Regular simplex inscribed into a cube and Hadamard matrix of half-circulant type. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997), pp. 458-471. http://geodesic.mathdoc.fr/item/JMAG_1997_4_a3/