A geometric approach to dynamic feedback design
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997), pp. 407-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let dimensions of a spaces states $n$, inputs $m$, and outputs $p$ of a generic linear control system and also integer $l>0$ satisfy the restriction $n$. An algorithm dynamic compensator design of degree $l$ is suggested. It is shown if $n$ a minimal order $l_{\operatorname{min}}$ of the compensator being assumed the control system is determined by correlation $(1+(n,mp)/(m+p,1)>l_{\operatorname{min}}(n,mp)/(m+p,1)$ (in case $n$, $l_{\operatorname{min}}=0$). Besides, for the control systems with two inputs or putputs, the procedure completely solving the compensators design problem of the first and, partially, the second powers is elaborated. An example is given.
@article{JMAG_1997_4_a0,
     author = {V. Y. Belozerov},
     title = {A geometric approach to dynamic feedback design},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {407--427},
     publisher = {mathdoc},
     volume = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_a0/}
}
TY  - JOUR
AU  - V. Y. Belozerov
TI  - A geometric approach to dynamic feedback design
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 407
EP  - 427
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_a0/
LA  - ru
ID  - JMAG_1997_4_a0
ER  - 
%0 Journal Article
%A V. Y. Belozerov
%T A geometric approach to dynamic feedback design
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 407-427
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_a0/
%G ru
%F JMAG_1997_4_a0
V. Y. Belozerov. A geometric approach to dynamic feedback design. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997), pp. 407-427. http://geodesic.mathdoc.fr/item/JMAG_1997_4_a0/