On a counterexample concerning unique continuation for elliptic equations in divergence form
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 308-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a second order elliptic equation in divergence form in $\mathrm R^3$, with a non-zero solution which vanishes in a half-space. The coefficients are $\alpha$-Hölder continuous of any order $\alpha1$. This improves a previous counterexample of Miller [1,2] Moreover, we obtain coefficients which belong to a finer class of smoothness, expressed in terms of the modulus of continuity.
@article{JMAG_1996_3_a6,
     author = {Niculae Mandache},
     title = {On a counterexample concerning unique continuation for elliptic equations in divergence form},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {308--331},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a6/}
}
TY  - JOUR
AU  - Niculae Mandache
TI  - On a counterexample concerning unique continuation for elliptic equations in divergence form
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 308
EP  - 331
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a6/
LA  - en
ID  - JMAG_1996_3_a6
ER  - 
%0 Journal Article
%A Niculae Mandache
%T On a counterexample concerning unique continuation for elliptic equations in divergence form
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 308-331
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a6/
%G en
%F JMAG_1996_3_a6
Niculae Mandache. On a counterexample concerning unique continuation for elliptic equations in divergence form. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 308-331. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a6/