The characterization of conformal maps of the upper halfplane on a ``comb'' type domain
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 290-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

The domain $\{z\in\mathbf C: -\infty\leq a\operatorname{Re}z$ is called a “comb” type domain. For each closed set $E$ on the real axis there exists the unique conformal map of the upper halfplane onto a certain “comb” type domain of mapping the set $E$ on the interval $(a,b)$. If $a=-\infty$ and $b=+\infty$, then the set $E$ is referred to the type $(A)$. If either $a=-\infty$, $b+\infty$, or $a>-\infty$, $b=+\infty$, then $E$ is referred to the type $(B)$. If both $a$ and $b$ are finite, then $E$ is referred to the type $(C)$. Conditions for a set $E$ to be referred to the type $(A)$, $(B)$ or $(C)$ are given.
@article{JMAG_1996_3_a5,
     author = {A. V. Kesarev},
     title = {The characterization of conformal maps of the upper halfplane on a ``comb'' type domain},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {290--307},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a5/}
}
TY  - JOUR
AU  - A. V. Kesarev
TI  - The characterization of conformal maps of the upper halfplane on a ``comb'' type domain
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 290
EP  - 307
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a5/
LA  - ru
ID  - JMAG_1996_3_a5
ER  - 
%0 Journal Article
%A A. V. Kesarev
%T The characterization of conformal maps of the upper halfplane on a ``comb'' type domain
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 290-307
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a5/
%G ru
%F JMAG_1996_3_a5
A. V. Kesarev. The characterization of conformal maps of the upper halfplane on a ``comb'' type domain. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 290-307. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a5/