Extremal problems for surfaces with bounded absolute (total) mean integral curvature in $n$-dimensionai space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 267-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some inequalities are proved which relate the absolute mean integral curvature of hypersurface in $n$-dimensional Euclidean space with the volume and diameter of $n$-dimensional body are proved. Lemma of minimality of measure of $(n-1)$-dimenstonal planes set is the focus of attention: hypersphere as the element of set of closed hypersurfaces, bounding the body of fixed volume, has this property.
@article{JMAG_1996_3_a3,
     author = {V. A. Dolzhenkov},
     title = {Extremal problems for surfaces with bounded absolute (total) mean integral curvature in $n$-dimensionai space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {267--273},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a3/}
}
TY  - JOUR
AU  - V. A. Dolzhenkov
TI  - Extremal problems for surfaces with bounded absolute (total) mean integral curvature in $n$-dimensionai space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 267
EP  - 273
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a3/
LA  - ru
ID  - JMAG_1996_3_a3
ER  - 
%0 Journal Article
%A V. A. Dolzhenkov
%T Extremal problems for surfaces with bounded absolute (total) mean integral curvature in $n$-dimensionai space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 267-273
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a3/
%G ru
%F JMAG_1996_3_a3
V. A. Dolzhenkov. Extremal problems for surfaces with bounded absolute (total) mean integral curvature in $n$-dimensionai space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 267-273. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a3/