Stability of solution of isoperimeter problem in Minkovsky's geometry
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 261-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ is a convex body in the $n$-dimensional Minkovsky's space $M^n$ ($n\ge2$) with a symmetrical metric, $B$ – normed body of $M^n$, $I$ – isoperimetrix of $M^n$, $F_B(X)$ – area of the surface, $V_B(X)$ – volume of body $X$ in $M^n$. The theorem was proved: there exist such values of $\varepsilon_0>0$, $C>0$, depending on $n$, $r_I$, $R_I$, that if $F_B^n-n^n V_B(I)V_B^{n-1}(X)\varepsilon$, $0\le\varepsilon\varepsilon_0$, $V_B(X)= V_B(I)$ it follow that $\delta_B(X,I)$, where $\delta_B(X,I)$ is deviation of $X$ and $I$ in $M^n$, $r_I$ – a capacity coefficient of $B$ in $I$, $R_I$ – scope coefficient of body $I$ by body $B$.
@article{JMAG_1996_3_a2,
     author = {V. I. Diskant},
     title = {Stability of solution of isoperimeter problem in {Minkovsky's} geometry},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {261--266},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a2/}
}
TY  - JOUR
AU  - V. I. Diskant
TI  - Stability of solution of isoperimeter problem in Minkovsky's geometry
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 261
EP  - 266
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a2/
LA  - ru
ID  - JMAG_1996_3_a2
ER  - 
%0 Journal Article
%A V. I. Diskant
%T Stability of solution of isoperimeter problem in Minkovsky's geometry
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 261-266
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a2/
%G ru
%F JMAG_1996_3_a2
V. I. Diskant. Stability of solution of isoperimeter problem in Minkovsky's geometry. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 261-266. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a2/