On the vertical strong sphericity of Sasaki metric of tangent sphere bundles
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 446-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution $\mathcal L^q$ on the Riemannian manifold $M^n$ is called strong spherical if the curvature tensor of its metric satisfies the condition $R(X,Y)Z=k(\langle Y,Z\rangle X-\langle X,Z\rangle Y)$, ($k>0$) for any tangent to $M^n$ vectors $X$, $Z$ and any $Y\in\mathcal L^q$. The value $q=\operatorname{dim}\mathcal L^q$ is called the strong sphericity index. The conditions are considered at winch the vertical strong spherical distribution can exist on tangent sphere bundle $T_1M^n$ with Sasaki metric.
@article{JMAG_1996_3_a14,
     author = {A. L. Yampol'skii},
     title = {On the vertical strong sphericity of {Sasaki} metric of tangent sphere bundles},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {446--455},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a14/}
}
TY  - JOUR
AU  - A. L. Yampol'skii
TI  - On the vertical strong sphericity of Sasaki metric of tangent sphere bundles
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 446
EP  - 455
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a14/
LA  - ru
ID  - JMAG_1996_3_a14
ER  - 
%0 Journal Article
%A A. L. Yampol'skii
%T On the vertical strong sphericity of Sasaki metric of tangent sphere bundles
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 446-455
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a14/
%G ru
%F JMAG_1996_3_a14
A. L. Yampol'skii. On the vertical strong sphericity of Sasaki metric of tangent sphere bundles. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 446-455. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a14/