On power serves with Gelfond--Leontev derivatives satisfying a special condition
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 423-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions on a function $l$ and an increasing sequence $(n_p)$ of non-negative integers are found in order that $f$ be an entire function whenever for all $p\in z_+$ the Gelfond–Leontev derivative $D_l^{n_p}f$ belongs to the class $A_\lambda(0)$, where the class $A_\lambda(0)$ consists of all functions $g(z)=\sum_{k=0}^\infty g_k(z^k)$ such that $|g_k|\le\lambda_k|g_1|$ ($k\geq1$) and $\lambda=(\lambda_k)$ is a sequence of positive numbers.
@article{JMAG_1996_3_a13,
     author = {M. N. Sheremeta},
     title = {On power serves with {Gelfond--Leontev} derivatives satisfying a special condition},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {423--445},
     publisher = {mathdoc},
     volume = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_a13/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - On power serves with Gelfond--Leontev derivatives satisfying a special condition
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 423
EP  - 445
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_a13/
LA  - ru
ID  - JMAG_1996_3_a13
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T On power serves with Gelfond--Leontev derivatives satisfying a special condition
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 423-445
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_a13/
%G ru
%F JMAG_1996_3_a13
M. N. Sheremeta. On power serves with Gelfond--Leontev derivatives satisfying a special condition. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996), pp. 423-445. http://geodesic.mathdoc.fr/item/JMAG_1996_3_a13/