A simple proof of Dubinin's theorem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 347-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a domain formed by removing $n$ radial segments connecting the circles $\{z:| z |=r_0\}$ and $\{z:|z|=1\}$ from the unit disk $\mathbf D$. Let $\Omega_0$ be a domain of the same type which is invariant with respect to rotation by the angle $2\pi/n$. If $\omega(z)$ and $\omega_0(z)$ are the harmonic measures of the unit circle with respect to these domains, then the inequality $$\omega_0\geq\omega_0(0),$$ holds, and the equality is possible only if the domain $\Omega$ coincides with $\Omega_0$ up to rotation. This proposition is known as the Gonchar problem which has been proved by Dubinin. The aim of this paper is to give a more simple proof of this theorem.
@article{JMAG_1995_2_a8,
     author = {A. E. Fryntov},
     title = {A simple proof of {Dubinin's} theorem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {347--355},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a8/}
}
TY  - JOUR
AU  - A. E. Fryntov
TI  - A simple proof of Dubinin's theorem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 347
EP  - 355
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a8/
LA  - en
ID  - JMAG_1995_2_a8
ER  - 
%0 Journal Article
%A A. E. Fryntov
%T A simple proof of Dubinin's theorem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 347-355
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a8/
%G en
%F JMAG_1995_2_a8
A. E. Fryntov. A simple proof of Dubinin's theorem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 347-355. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a8/