On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 319-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

Isometric immersions of the Lobachevsky plane $L^2$ into $E^4$, are considered. These immersions are surfaces in $E^4$, which have a vanishing Gaussian torsion. The immersions are constructed by using different solutions of the “sine-Gordon” equation. It is proved that the domains of $L^2$, which are immersed, are parts of the domains bounded by two horocycles or two equidistants. The sizes of the domains under consideration are estimated.
@article{JMAG_1995_2_a5,
     author = {O. V. Kuznetsov},
     title = {On construction of isometric immersions of the domains of {Lobachevsky} plane $L^2$ into $E^4$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {319--328},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a5/}
}
TY  - JOUR
AU  - O. V. Kuznetsov
TI  - On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 319
EP  - 328
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a5/
LA  - ru
ID  - JMAG_1995_2_a5
ER  - 
%0 Journal Article
%A O. V. Kuznetsov
%T On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 319-328
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a5/
%G ru
%F JMAG_1995_2_a5
O. V. Kuznetsov. On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 319-328. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a5/